M apper's Guide for

Electronic Commerce ProcessingNode

Version 2.2

May 1999

Inter-National Research Institute, Inc.
12350 Jefferson Avenue, Suite 400
Newport News, Virginia 23602

Mapper’s Guide for ECPN Version 2.2

Thefollowing trademarks and registered trademarks are mentioned in this document. Within the text of this

document, the appropriate symbol for a trademark (™) or a registered trademark (®) appears after the first
occurrence of each item.

Mercator is a registered trademark of TSI International Software Ltd.

Copyright © 1999
Inter-National Research Institute, Inc.
All Rights Reserved

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the
clause at DFARS 252.227-7013 (NOV 1995).

Mapper’'s Guide

Ccontents

10 Document Overview 1
2.0 Referenced Documents 2
3.0 Tranglation Overview 3
3.1 Transaction Types 4
32 Maps 5
3.3 ECPN Translation Programs 7
34 UDF-to-X12 Trandation Basics 7
34.1 X12 Envelope Information 8
34.2 Envelope Vaue Generation 9
34.21 Vauesfrom Message Content 9
34.2.2 Vauesfrom Databases that Support Translation
34.23 Vauesfrom Look-up Tables 10
35 X12-to-UDF Translation Basics 11
3.6 Processing Flow 11
36.1 UDFtoxX12 11
36.2 X12toUDF 12
3.7 Admin Message Processing 12
3.8 Trandation Toolbox 13
4.0 Type Tree Construction 14
4.1 Document Overview 14
411 ANSI ASC X12 Document 14
4.1.2 Implementation Conventions (IC) 14
413 Patl0 15
414 UDF Specifications 15
4.2 Creating X12 Type Trees 15
4.3 Creating UDF Type Trees 20
44 Creating Other Type Trees 25

441 Acknowledgments 25
442 Premap TypeTrees 33
443 Additional Input Look-up Table Type Trees 34

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

10

MAPPER'’S GUIDE

5.0 Map Construction 35
5.1 Trandating UDFto X12 35

511
512
513
514

Map Naming Conventions 35
ISA Segment 36

GS Segment 37

Audit Settings 37

52 Trandating X12to UDF 38

521

Map Naming Conventions 38

5.3 Building the Premap(s) 39

531 ThePremapl Stage 39
53.2 ThePremap Stage 39
53.21 ThePremap Index Output File 39
53.22 ThePremap UDF Output File 39
6.0 Addressing Procedures 40
6.1 Implicit Addressing 40
6.1.1 UDF-to-X12 Trandlation 40
6.1.2 X12-to-UDF Trandlation 42
6.1.3 X212 997 Acknowledgment from X12-to-UDF Translation Audit Log 42
6.1.4 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log 42
6.2 External Addressing — SAACONS Example 43
6.2.1 UDF-to-X12 Translation 43
6.2.2 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log 44
6.2.3 X12-to-UDF Translation 44

6.3 Combined Implicit/External Addressing — IPC Example 45

6.3.1

UDF-to-X12 Translation 45

7.0 Integration Procedures 46

Appendix A EXIT Functions 49

Appendix B Message Description File 57

Appendix C TESTAPI Map Family 64

Appendix D Notes 67

List of Figures

Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6

Message Exchange 3

Delete Subtypes Dialog Box 16

Merge Type Dialog Box 17

UDF Enveloping Scheme Type Tree Window 20
Copy Type Tree Dialog Box 21

Levels of UDF Abstraction 22

Record Loops 22

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

Figure 4-7 Record Loopsin Type Tree 23
Figure 4-8 Loop Component List 23

Figure 4-9 Composite List Type Tree 24
Figure4-10 Composite Component List 24
Figure4-11 ExampleAuditLog 25
Figure4-12 Audit Type Tree 26

Figure4-13 Audit Log Component List 27
Figure4-14 Map Instance Component List 27
Figure4-15 Audit Type Tree Section List 28
Figure4-16 Data Audit Component List 28
Figure4-17 Audit Type Tree Element List 29
Figure4-18 Audit Element Component List 29
Figure4-19 Transaction Component List 30
Figure4-20 Error Component List 30
Figure4-21 Error Detail Component List 31
Figure 4-22 Error Record Component List 31
Figure4-23 Audit Type Tree Set List 32
Figure4-24 Composite Error Component List 33

List of Tables

Table 3-1 Transaction Sets 4

Table 3-2 Translation Map Default Directories 6

Table 3-3 X12 Envelope Information 8

Table5-1 ISA Segment 36

Table 5-2 GS Segment 37

Table 6-1 Trading Partner Identifier Types and Properties 41

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 iii

MAPPER'’S GUIDE

This page intentionally |eft blank.

iv MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

1.0 Document Overview

This document serves two purposes: 1) To give an overview of translation processing within

the Electronic Commerce Processing Node (ECPN) and 2) To provideinstructions on creating

aset of translation maps and supporting products for a new user-defined file (UDF) type. This
document assumes that you have some previous knowledge of the TSI Mercator® development
suite. You should also be familiar with the ECPN software, the X12 messaging structure, and
the UDF messaging structure to be translated.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 1

MAPPER'’S GUIDE

2.0 Referenced Documents

Thefollowing documents are referenced in thisMapper’s Guideln the event of alater version
of areferenced document being issued, the later version shall supersede the referenced version.

* ASC X12 Electronic Data Interchange X12 Standards, Release 4010, DISA, December
1997.

» Draft Software User’'s Guide for Electronic Commerce Processing Node, Version 2.2,
INRI, May 1999.

» Mercator: Execution Engine Core API Reference Guide, TSI International Software, Ltd.,
1997.

» Mercator: Map Editor Reference Guide, TSI International Software, Ltd., 1997.

» Mercator: Type Editor Reference Guide, TSI International Software, Ltd., 1997.

2 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

3.0 Trandation Overview

The Electronic Commerce Infrastructure (ECI) comprises government and industry systems
that conduct business using Electronic Data Interchange (EDI). ECPN facilitates EDI between
government sites (i.e., Automated Information Systems [A1Ss]) and industry sites(i.e., trading
partners).

ECPN processes two categories of messages — X12 format and user defined file (UDF)
format. The X12 format complies with the American National Standards Institute (ANSI)
benchmark for electronic commerce. As their name implies, UDF formats vary, depending on
their origination point. When ECPN receives a UDF, it translates the UDF into X12 format as
part of processing. After translation, an X12 may be translated again to another UDF format
depending upon its destination.

Figure 3-1depicts a typical message exchange: An AlS sends a UDF message to ECPN, which
translates the message to X12. (Some AISs do not send UDFs directly to ECPN. In this case,
the AIS sends a UDF to a gateway [GW], which translates the message to X12 and then sends
it to ECPN.) ECPN forwards the X12 message to a Value Added Network (VAN). The VAN,

in turn, translates the message to a UDF format that a trading partner can accept and sends the
UDF to the trading partner. If the trading partner sends back a message in response, that
message (a UDF) travels to the VAN, which translates it to X12 format and forwards it to
ECPN. When ECPN receives the message, it translates the message to UDF and then sends it
to the AIS. (For some AlSs, ECPN sends the X12 to a GW, which translates the message to
UDF and then sends it to the AlS.)

Figure 3-1 Message Exchange

W VAN

UDF W ECPN VAN

uﬂ

X12

X12 -

o

=

=
_
]
m

UDF ECPN

VAN

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 3

MAPPER'’S GUIDE

3.1 Transaction Types

Table 3-1 lists the most commonly used transaction types for EDI.

Table 3-1 Transaction Sets

Identifier Title

810 Invoice

820 Payment Order/Remittance Advice

821 Financial Information Reporting

824 Application Advice

836 Procurement Notice

838 Trading Partner Profile

840 Request for Quotation

843 Response to Reguest for Quotation

850 Purchase Order

855 Purchase Order Acknowledgment

860 Purchase Order Change Request — Buyer Initiated
865 Purchase Order Change Acknowledgment/

Request — Seller Initiated

997 Functional Acknowledgment

4 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

3.2 Maps

ECPN uses the Mercator software to perform the actual translation of messages using a series
of maps. A map isatranslation specification to Mercator. A collection of maps and processing
rules on one type of UDF is called amap family. A UDF-to-X12 map handles all UDFsfor al
transaction types. Similarly, an X 12-to-UDF map handles all X 12sfor all transaction types. For
example, if an AIS sends 840, 850, and 860 transaction types, asingle UDF-to-X12 map for
the map family handles the mapping for all of these transaction types.

ECPN supports two types of translation acknowledgments: 997 and 824. A 997
acknowledgment contains status information about an X12-to-UDF translation, and an 824
acknowledgment contains status information about a UDF-to-X 12 translation. A map family
that includes acknowledgment maps produces an acknowledgment message for each
tranglation. A map family that does not include acknowledgment maps does not generate
acknowledgments. ECPN administrators may configure the interface between ECPN and the
message originator to send no acknowledgments, to send acknowledgments for translation
failures, or to send acknowledgments for all translations.

The interface between ECPN and an external source is known as a channel. For a complete
description of communications channels, see the Software User’s Guide for Electronic
Commerce Processing Node

Map families are specified per channel; therefore, each message received on achannel is of the
specified message type, and each message sent to achannel istranslated to that same message
type. Each map invoked for agiven family is specified viaamessage description file. Through
keywords, the message description file specifies each of the maps associated with that family.
Thisfile also contains descriptiveinformation that is shown during channel configuration. For
an explanation of the message description file, see Appendix B. Associated with each map
family arevarious map documentsthat provide details on the Implementation Conventions (1C)
used, the UDF specifications, and so on.

A typical map family consists of one or more of the following types of maps:
e Premap1l

This map is used when a two-stage file manipulation is required prior to the regular
UDF-to-X12 translation. It typically preprocesses an incoming file to produce a series of
contiguous single-addressee messages. This processing occurs for each message type that
has a sequence of addresses above a single message body. A Premapl is used for
UDF-to-X12 translation, and it is optional.

e Premap

This map bounds, filters, and pads each message in an input file so that the translator can
extract each message for mapping. A Premap is used only in UDF-to-X12 translation, and
it is optional. If a Premap1l is used, a Premap must also be used.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 5

MAPPER'’S GUIDE

UDF to X12 map

This map accepts as input either a raw UDF message or a message prepared by the
premap(s) and produces the corresponding X12 message and audit log. The audit log is
used as input to the optional 824gen map to produce a translation status message.

824gen map

Using input from the audit log that was produced through the UDF-to-X12 map execution,
this map produces an 824 X12 translation status message, known as an acknowledgment.
Note that if this acknowledgment is sent back to the UDF originator, this translation status
message is translated to an 824 UDF.

X12 to UDF map

This map takes an X12 message as input and produces the corresponding UDF message
and audit log. This audit log is used as input to the optional 997gen map to produce a
translation status message.

997gen map

Using input from the audit log that was produced through the X12-to-UDF map execution,
this map produces a 997 X12 that may be sent to the X12 originator. Note that during
outgoing (X12-to-UDF) translation, a 997 acknowledgment is not generated for a message
that was received on a UDF channel or for a system-generated message, such as an 824
acknowledgment message created during UDF-to-X12 translation.

Table 3-2lists the default location of each map family component. Note that the location of
individual maps (ported to HP-UX) and optional look-up tables can be overridden using full
paths or expandable tokens in the message description file. For a description of map names, see
Appendix B

Table 3-2 Trandation Map Default Directories

Thisdirectory Contains

/h/data/global/EC/Messages/Maps/<mapMap families (individual collections of map
family> files ported to HP-UX); may also contain

optional look-up tables

/h/data/global/EC/Messages/MessageDebt#ssage description file, which includes
<map_family> descriptions of map files, transaction sets

supported, and any unigue addressing
information

/h/data/local/EC/html/MapDocs/<map_ (Optional) Mapping specifications and
family> implementation conventions, along with the

HTML files that serve as their table of contents

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

For example, for the Standard Army Accounting and Contracting System (SAACONS), the
default location for the map files and the look-up table files is /h/data/global/EC/M essages/
Maps/SAACONS; the location for the message description file is/h/data/global /EC/M essages/
M essageDesc/SAACONS; and the location for the HTML file and all of the documents that it
references is /h/datall ocal/EC/html/MapDocs/ SAACONS.

3.3 ECPN Trandation Programs

The following ECPN programs are essential to translation:

comms, emaild, email_send, ftpd

These programs are responsible for receiving and sending messages to and from ECPN. If
a program is receiving messages, it is called InComms, and if a program is sending
messages, it is called OutComms.

InXlator

The InXlator program is responsible for interacting with Mercator using all of the specified
premaps and maps to perform UDF-to-X12 translation and to generate the associated
acknowledgment. The InXlator also queries the system setup database and TPDB on behalf
of the maps and provides other reference services. (For more information on this query
process, seAppendix A)

Router

The Router program determines target channels based on how the routing database is
configured. If the target channel is a UDF channel, the message is queued to the OutXlator.
If the target channel is not a UDF channel, the message is queued directly to OutComms.

OutXlator

The OutXlator program is responsible for interacting with Mercator using the specified
maps to perform X12-to-UDF translation and to generated the associated
acknowledgment. The OutXlator also queries the system setup database and TPDB on
behalf of the maps and provides other reference services. (For more information on this
query process, segppendix A)

3.4 UDF-to-X12 Translation Basics

Each UDF message translates into a single X12 transaction. So, for example, if a UDF input
file contains five UDFs, five separate X12 transactions result from the UDF-to-X12 translation
process. For each X12 transaction produced, the X12 envelope information (as described in this
section) is generated by the map. During each map invocation, the map may request database
data or specify other values within the translator, as describggpbendix A

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 7

MAPPER'’S GUIDE

3.4.1 X12 Envelope Information

An interchange is the information in a message within one | SA and the corresponding |EA
segment, and a functional group is the information within one GS and the corresponding GE
segment. These components define the standard envel oping of an X12 transaction, and this
envelope contains addressing information. Each of the elements listed in Table 3-3 is created
by the map to produce an X 12 envelope. (For a description of the X 12 interchange [I SA/IEA]
and functional group [GS/GE] envelopes, see the ASC X12 Electronic Data Interchange X12
Sandards, Release 4010.)

Table 3-3 X12 Envelope Information

Field number Field name Value/Rule

ISAOL Authorization Information Qualifier “00”

ISA02 Authorization Information None

ISAO03 Security Information Qualifier “00”

ISA04 Security Information None

ISA05 Interchange Sender ID Qualifier Seection 3.4.2

ISA06 Interchange Sender ID S8ection 3.4.2

ISAO7 Interchange Receiver ID Qualifier S8ection 3.4.2

ISA08 Interchange Receiver ID S8ection 3.4.2

ISA09 Interchange Date Map rule:
CURRENTDATE ()

ISA10 Interchange Time Map rule:
CURRENTTIME ()

ISA1l Interchange Control Standards ID “u”

ISA12 Interchange Control Version Number Map family dependent
(e.g., “00305")

ISA13 Interchange Control Number S8ection 3.4.2.2

ISA14 Acknowledgment Requested “0”

ISA15 Test Indicator “Pr

IEAO1 Number of Included Functional Groups Map rule: COUNT
(FuncGroups)

IEAO02 Interchange Control Number Identical to ISA13

GS01 Functional ID Code 2-letter code, dependent
on transaction set

GS02 Application Sender’s Code UDF Sender Code

GS03 Application Receiver's Code UDF Receiver Code

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

Table 3-3 X12 Envelope Information (Continued)

Field number Field name Value/Rule

GSo04 Date Map rule:
CURRENTDATE ()

GSO05 Time Map rule:
CURRENTTIME ()

GS06 Group Control Number S&ection 3.4.2.2

GS07 Responsible Agency Code “X”

GSo08 Version Release Industry Code Map family dependent
(e.g., “003050")

GEO1 Number of Transaction Sets Included Map rule: COUNT
(Transactions)

GEO02 Group Control Number Identical to GS06

3.4.2 Envelope Value Generation

The envelope values (listed in Table 3-3) are filled during X 12 message creation using the
techniques described in Section 3.4.2.1t0 3.4.2.3.

Each AlSidentifiesitself and addresses UDF messages to recipientsin its own unique way.
Sometimes this identification information is contained within the UDF; at other times, it is
external information, such as the file name extension. An AlS primarily uses the following
codes for addressing:

* CAGE - Commercial and Government Entity

« DODAAC - Department of Defense Activity Address Code
* DUNS - Data Universal Numbering System

* DUNS+4 — DUNS number with a 4-character suffix

3.4.2.1 Vaues from Message Content

Most of the time, an addressing code in message content is an unqualified value. Heuristics
must be applied to deduce whether the value is a CAGE code, a DODAAC, and so on.

Typically, the following rules are used for distinguishing codes:
* If a code is 9 numeric characters, it is a DUNS.
« If acode is 13 numeric characters, it is a DUNS+4.

« Ifacode is 5 characters (1st and 5th numeric; others alphanumeric, except | and O), itis a
CAGE.

e Any other code is a DODAAC.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 9

MAPPER'’S GUIDE

3.4.2.2 Vaues from Databases that Support Translation

The following two ECPN databases assist in the translation process:

System setup database

This database specifies a range for ICNs (ISA13s) and another range for GCNs (GS06s).
ICNs and GCNs are incremented by ECPN each time an X12 envelope is generated, that
is, whenever any of the following events occur:

— A UDF message is translated to an X12 interchange.

— An 824 X12 translation status message is generated.

— A 997 X12 translation status message is generated.

ICNs and GCNs wrap at the end of the range specified in this database.

The system setup database also specifies the ISA05/ISAQ6 that is used in the X12 envelope
for the translated message.

Trading partner database

Each trading partner registers with the Central Contractor Registry (CCR) via an 838
message that contains information on the trading partner. After verifying this information,
CCR forwards the 838 to ECPN. In turn, ECPN parses the 838 and populates the trading
partner database (TPDB) with information such as the name and address of the trading
partner, remittance information, points of contact, and CAGE/DODAAC/DUNS for the
trading partner. The key field is DUNS.

When an envelope is generated for some UDF families, the TPDB is queried to generate
addressing information. (For more information on this query procesAppeadix A)

3.4.2.3 Vaues from Look-up Tables

10

When defined in the message description file, an additional input file cdlbel-ap table is
passed to the UDF-to-X12 map. Look-up tables provide map family or channel-specific data

so that message content or attributes (e.g., received file name extension) may be used to derive

an envelope address (i.e., ISA06, ISA08, GS02, or GS03). A look-up table may be edited
through the ECPN edit channel window, as described iBdffisvare User’'s Guide for
Electronic Commerce Processing NoBer a complete description on path/file name

resolution for look-up tables, see Appendix B.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

3.5 X12-to-UDF Trandation Basics

Each message that is routed to a UDF channel type must be translated to that channel’'s UDF
format prior to transmittal. This principle applies to messages received on an X12 channel,
messages received on a UDF channel and translated into the intermediate format (X12), and
ECPN-generated X12 824 application advice messages defining the translation status of a
received UDF message. During each map invocation, the map may request database data or
specify other values within the translator, as describégppendix A

By default, if a 997 acknowledgment map is provided, each X12-to-UDF translation generates
an X12 997 Functional Acknowledgment message. This acknowledgment message reports on
the translation success or failure of an X12 functional group and is generated by parsing the
audit log, which is an artifact of the X12-to-UDF translation. The default amount of data that

is passed to the X12-to-UDF map is a single functional group (at a time). This default can be
overridden by setting the translation level (values ISA, GS, or ST) in the message description
file. For a complete description of the message description fil&maendix B

3.6 Processing Flow

The following subsections describe the processing flow for UDF-to-X12 translation
(Section 3.6.1and X12-to-UDF translatiorSgction 3.6.2

3.6.1 UDF to X12

A channel is configured for the UDF type for which it receives messages. The InComms
process for that channel places a received file on a queue for the InXlator. If a Premap1l is listed
in the message description file, the InXlator invokes the Premapl to reorganize the input file
into contiguous single-addressee messages. InXlator then invokes the premap (if specified in
the message description file). The execution of this premap produces the following files:

« A modified input file that may include filtered values, replaced values, record padding,
and/or record initiation tokens.

« Anindex file specifying the bounds for individual messages in the input UDF file and the
modified input file. Note that if a Premap1l is invoked prior to the premap, the output of
Premapl is the input UDF file for premap.

If premap(s) are specified and a premap fails, a default 824 acknowledgment is generated. The
824 acknowledgment may be sent back to the UDF originator if the channel is configured to do
so0. This default message provides very little detail and notifies the message originator of the
translation failure.

If premap(s) are specified and the premap stage is successful, the InXlator uses the index file
to divide the input and output files of the premap into single transaction pieces. The premap
output pieces are passed individually through the UDF-to-X12 map. If no premap was specified
in the message description file, the original received UDF file is passed to the UDF-to-X12
map.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 11

MAPPER'’S GUIDE

If an 824gen map is provided for the map family, the InXlator executesit after each execution
of the UDF-to-X12 map to generate 824 X 12 translation status messages.

The InXlator then collects all of the output X 12s, collects the individual UDF messages from
the input file, extracts the 824 X12s, and queues them to the Router process.

The Router process, using information passed by the InXlator, creates message objects for the
X12s and the 824 X 12s, linking them appropriately. The Router then routes the X12s to the
destination — the X12 to UDF translator (OutXlator) if the destination is a UDF channel or
OutComms if the destination is an X12 channel.

If the ECPN administrator has elected to send acknowledgments back to the original channel,
and if the acknowledgment messages are generated for the map family, the Router routes the
824 X12s to the OutXlator, which translates them to UDF before sending them to the
originator.

3.6.2 X12 to UDF

Using the information passed from the Router, the OutXlator invokes the X12-to-UDF map for
translating the X12 to a UDF. Next, if a 997gen translation map is provided for the map family,
the OutXlator invokes the 997gen map to produce 997 X12 translation status messages. This
invocation of the 997gen map is skipped if the X12 message being translated is an 824 X12
translation status message or if it is just an intermediary message in UDF-to-UDF translation.

The OutXlator then queues the translated message (the UDF) to OutComms and queues the 997
X12s to the Router (to be sent back to the X12 originator if the source channel is configured
this way).

If the destination channel for the UDF is of the same type as that of the UDF sender, no
invocations of the X12-to-UDF map are made, and the UDF is extracted from the message
source and sent to the destination. For example, this capability is used to forward (successfully
translated) SAACONS UDFs to the Defense Accounting and Printing System (DAPS).

3.7 Admin M essage Processing

12

ECPN provides aADMIN tab in the edit channel window through which the user can

configure how and where to send the 824 and 997 translation status messages (admin
messages) on each channel. These messages may be sent back on the incoming channel. (For
example, if UDF messages are received via FTP, these admin messages may be sent back via
FTP.) Alternately, the translation status messages may be sent as email messages to the email
address(es) specified. In addition, the ECPN administrator may specify whether to send all
acknowledgments, send only the negative acknowledgments, or not send any
acknowledgments.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

3.8 Translation T oolbox

The tranglation process is transparent to ECPN administrators. However, the ECPN

administrators may use the translation toolbox interface as a window into the various map
invocations that the InXlator and OutXlator perform. The translation toolbox is available from

the message log and error queue and allows administratorsto view all of the intermediate data

such as the premap.out file, the modified input file, and so on. For information on the

translation toolbox, see the Software User’s Guide for Electronic Commerce Processing Node

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 13

MAPPER'’S GUIDE

4.0 Type Tree Construction

In order to begin the mapping process, you must either create or use existing type treesto
represent the input and output datainvolved in the transl ation process for your specific system.
Because these type trees will be used in mapping either UDF transactions to X 12 transactions
or X12 transactions to UDF transactions you must create both UDF and X 12 type trees.

4.1 Document Overview

Various types of documents are available to assist you in the map development process. This
section provides an overview of these documents.

4.1.1 ANSI ASC X12 Document

The ASC X12 Electronic Data Interchange X12 Sandards is the standard document for the
entire X 12 format of messages and is published (in print only) for each version of the X12. For
example, version 3010, version 3040, version 3050, and version 4010 each hasits own X12
specification.

Each transaction type that can be used in an X12 EDI exchange is described in this document.
This document also describes each segment that is part of a transaction and lists the data
dictionary for each element of each segment.

4.1.2 Implementation Conventions (1C)

Implementation Conventions are also sometimes called I|mplementation Guidelines (1G). The
X12 standard is an all-encompassing document that serves everyone who exchanges messages
viaEDI. However, each industry pares down the standard to suit its particul ar needsand creates
an industry-specific IC.

The Government issues this pared down standard that suits its requirements. Some of the
specifics of this paring down are as follows:

* Some optional segments in the X12 standard might be marked as mandatory in the IC.
» Other optional segments in the X12 standard might be marked as not used in the IC.

» Each element might be restricted to having only a few values taken from the entire data
dictionary.

For each version of X12 that ANSI specifies, there is a corresponding set of ICs.

14 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

4.1.3 Part 10

Part 10 deals primarily with X12 enveloping and the acknowledgment model that isto be used
for EDI in the Government. This document does not specify an acknowledgment model for
UDF-to-X12 trandlations. It does, however, specify Point-of-trandation (POT) to

Point-of -transl ation acknowledgments for X12s.

4.1.4 UDF Specifications

Each agency that sends UDFs to ECPN, documents the format of UDF data that it sends.

4.2 Creating X12 Type Trees

Y ou may create atypetree by paring down an existing ANSI X12 typetree. Y ou should do this
only when the X 12 specification is taken directly from the ANSI X 12 standards.

To make a copy of the standard EDI typetree

Thefirst step in creating an X 12 typetreeis to make a copy of the standard EDI type tree,
containing only the transactions you specify (also known as paring down a standard type tree).

1. OpentheEDI typetree(e.g., ANSI3070.MTT, which containsthe full ANSI 3070 version
release). When creating a multi-version tree, start with the latest version release that you
will be using.

2. Tosavethetypetree asyour new |IC type tree file and renamethefile, select File > Save
As.

3. Under Inbound Partner Funct'IGroup ANSI EDI, select F3070 (or Fnnnn, where nnnn
isthe 4-digit version release indicator code).

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 15

MAPPER'’S GUIDE

4. Select Type > Delete Subtypes. The Delete Subtypes dialog box (Figure 4-1) appears,
listing all of the F3070 Inbound Partner Funct’IGroup objects contained within the type
tree.

Figure 4-1 Delete Subtypes Dialog Box

% Type Tree - TEMP3070.MTT

@ EDI
—& ANSI
—& Control
—& Funct'|Group
L& Partner
% Inbound Delete Subtypes |
Lx
& Qutbound I;S;l]l;ll Inbound ﬂl
L S
*> F3070 #1104 Cloze
Lo vin7o #120 _ s |
—=% Interchange m 31 Select All |
L —& Transmission
#125 Select Hone |
#1126
ma7z
128 —Iﬂe"’
#1129 i

5. IntheDelete Subtypes dialog box, clickSelect All. All of the subtypes in the list are
highlighted.

6. Deselect each group keep by clicking it, which removes the highlighting. Some
transactions are included as part of a group of related elements. For example, transaction
821 is included with the 827 transaction as part of the FR group.

7. Toremove the groups, cliBelete.

8. Repeatteps 3to 7 for F3070 unde®utbound Partner Funct'|Group ANSI EDI to
remove the Outbound Partner Groups that are not needed.

9. SavethelCfile.

At this point, many unwanted subtypes remain in the type tree. Y ou may remedy this
situation by exercising one or both of the following two options. One option is to remove
an unnecessary directional transaction set. Another option isto remove unnecessary
transactions within a group containing desired transactions. To prune the type tree to the
desired scope, perform the stepsin this section again.

16 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

Tomergean IC typetreeinto anew tree

This process removes all unnecessary data elements that are not referenced in a pared-down

type tree.
1. Create anew typetree, using EDI asthe root name. Save the new tree to a different name
than that used in Step 2 of To make a copy of the standard EDI type tree.
2. Fromyour saved ICfile(created in Sep 2 of To make a copy of the standard EDI typetree),
select the type Transmission EDI.
3. Select Type > Merge. The Merge Type dialog box (Figure 4-2) appears.
4. Select thetype tree created in Step 1, and then select the Merge Sub-Tree check box.
Figure 4-2 Merge Type Dialog Box
[TypeTies NEWSHMIT _ MEIE]
@ EDI ® EDI
—& ANSI
@ Control
@ Funct'IGroup
L—& Partner
Inbound _
|_’ F3070 From: |Tlansmlssmn EDI | | oK I
Qutbound e
L@ F3070 To Tree: [CAMERCATOR\NEW3070.MTT | | Cancel |
@ V3070 Help |
—& Interchange
5. Click OK.
6. After the merge finishes, save the new type tree.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

17

MAPPER'’S GUIDE

To clean up unused elements

18

Although you may have removed some elements in the merging process, other unnecessary

elements remain. For example, in the case of removing a directional set of transactions (e.g.,

Outbound) presented in To make a copy of the standard EDI type tree, the Funct'IGroup

Partner is removed, but the Transmission and Interchange remain. These directional elements
can be removed by selectiigansmission or Interchange and selectingype > Delete

Subtypes (For this example, selectin@utbound and then clickindelete.)

The same process may also be performed by selecting the part to be rethdbedirid
Transmission or Outbound Interchange) and pressing thielete] key on the keyboard. A
dialog box appears confirming that you wish to delete that type.

NOTE: If you wish to later add a different version transaction in a certain directiowt do
remove the directional transaction set. Perform the process detdllethake a copy of the
standard EDI type tree, but deleteall transaction sets for that direction.

Another commonly unused set of elements which remain are those elements related to UCS
transactions, as opposed to X12 transactions. UCS types appear in the following locations:

e Inbound/Outbound Transmission EDI
* Inbound/Outbound Interchange EDI
* Variant Control ANSI EDI

The first two types can be removed using the Delete Subtypes method (descFibedke a
copy of the standard EDI typetree), by selectingnbound or Outbound within the
Interchange EDI or Transmission EDI levels. For thé/ariant Control type, use the same
method, selectinGontrol ANSI EDI.

Another way to delete the types is to select the location to be removed (UCS Inbound/Outbound
Transmission EDI, UCS Inbound/Outbound Interchange EDI, and Variant Control ANSI EDI)
and press thbelete] key on the keyboard. A dialog box appears confirming that you wish to
delete that type.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

To analyze a new typetree

This procedure ensures your new tree isvalid.

1
2.
3.

4.

Select Tree > Analyze, or select the analyze tool from the toolbar (a check mark).
Select either Logic or Both, and then click OK.

Correct any errors that result.

NOTE: If you wish to later add a different version transaction and have deleted an

Inbound or Outbound Funct'IGroup, you will not be able to correct the error that will
result. Once the different version transaction is added in the direction that was deleted,
and the tree is analyzed, the errors should be resolved.

Save the type tree.

To add additional functional groupsto anew IC typetree

Note that this process may not be necessary.

1
2.
3.

4
5.
6
7

Open the new IC typetree.
Open the standard EDI type tree.

Under Inbound/Outbound Partner Funct’IGroup ANSI EDI, select thefunctional group
that contains the transaction set to be added.

Select Type > Merge. The Merge Type dialog box (Figure 4-2) appears.
Select the | C type tree, and then select the Merge Sub-Tree check box.
Click OK.

After the Merge finishes, save the industry subset file.

To analyze a new typetree

This procedure ensures your new treeisvalid.

1

2
3.
4

Select Tree > Analyze, or select the analyze tool from the toolbar (a check mark).
Select either Logic or Both and then click OK.
Correct any errors that result.

Save the type tree.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 19

MAPPER'’S GUIDE

4.3 Creating UDF Type Trees

20

If the datawithin aUDF issimilar in representation to that of an ANSI X 12 structure, you may
useatypetreeof the corresponding X 12 transaction set, and derivethe UDF data structurefrom
asubset of thistree. The record format and UDF envel oping may be changed as necessary to
match the UDF specification.

It may be necessary to create the type tree from scratch. If thisisthe case, you may find it
helpful to look at an existing type tree to learn what your type tree should look like.

Each UDF varies depending upon the logical map requirements; however, a consistent
envel oping scheme should be used throughout all UDF type trees. Consistency makesit easier
to understand a type tree, and makes the process of merging type trees easier.

For consistency, the root node of the UDF type tree should be named UDF. This node denotes
the type of message that is contained in the type tree. The following categories should be under
the UDF root node: Control, Transmission, and any version or system-specific transaction
identifiers(e.g. V3050, V3070). The Control category should contain al delimiter information
and any structure used to contain only X12 enveloping information (1SA and GSinformation).
Inthe exampledisplayedin Figure 4-3, only version-specificidentifiersareused. WhileaUDF
does not necessarily have version identifiers, it is sometimes useful to describe differing UDF
transactions by the version and transaction type of the corresponding X 12 to which it will be
trandated.

Figure 4-3 UDF Enveloping Scheme Type Tree Window

3 Type Tree - UDF3050.MTT =1o]x]
@ Control
@ Transmission
L—@& Partner
@ Y3050
—& Element
—@ MComposite
—& Record
—& SComposite
—@ Set
@ #840
@ #1843
L& Transaction

o e

Because the data represented in the UDF appears in the form of a continuous stream of bytes,
amethod must be used to determine the separation between individual Elements, and, at a
higher level of abstraction, Records, Loops, and Transactions. To help in this separation
process, you may use ltems known as Control Delimiters. In many cases, the following three
delimiters are used: the Composite, Element, and Terminator delimiters. The most commonly
used delimiter, the Terminator delimiter signifies the end of arecord, usually in the form of a
carriage return/line feed sequence or some other end-of-line signal. The Composite delimiter

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

marks the boundaries between Elements contained within a Composite. The Element delimiter
marks the boundaries between Elements and Composites used within arecord. The Composite
and Element Delimiters are mainly used with data, which contains delimited records, as
opposed to fixed-length records.

The Control category may be created using the new element tool (leaf tool), or it may be copied
from an existing type tree. To copy the category, select Control on the original type tree and
then select Type > Copy. The Copy Type dialog box (Figure 4-4) appears. To copy the
Control category, click on the destination type tree, select the Copy Sub-Tree check box, and
then click OK.

Figure 4-4 Copy Type Tree Dialog Box

% Type Tree - SAMPUDF.MTT M= E3| |- Type Tree - NEWUDF.MTT

@ UDF ® EDI

@

@ Transmission

L—@& Partner

@ V3050
—& Element
—& MComposite
—& Record {4l Copy Type =]
—@ SComposite
—@ Set

& #ga0 To: [UDF | Cancel

@ #5843
Help |

L—& Transaction

e e

From: [Control UDF | [ok |
|

When using the copy method, you may find that some of the delimiters are unnecessary. These
delimiters or elements may be removed by selecting each one and then pressing the [Delete]
key on the keyboard. A dialog box appears asking you to confirm the deletion. Y ou may also
wish to limit the possible values that a specific delimiter can contain. Y ou may view al of the
possible values that a delimiter contains by double-clicking on the specific delimiter (e.g., the
Terminator delimiter under Delimiter Control UDF). Once you are viewing the list of values,
values may be added by clicking on the bottom-most empty square in the Restriction column
and entering the new value. Make surethat the correct method of representation is chosen, Hex
or Symbol, before entering the value. Y ou may aso wish to enter a description of the entered
value. If you wish to remove one or more values from the list, you may do this by selecting the
value to remove, and then selecting Restriction > Delete. Once all changes have been made,
close the restriction window. If changes were made, you are prompted to save the changes.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 21

MAPPER'’S GUIDE

22

The basic concept of afileisabstracted asthe Transmission level of atype tree (Partner group
in Transmission category). A file containing one or more UDFsis, in turn, thought of as a
Transmission consisting of one or more Transactions, where a UDF is abstracted as the
Transaction level of atype tree (Transaction Partition Group in SysName or V3070, V3050
Category). The Transaction Group isaPartition Group that allowsthistypetreeto be used with
varying types of transactions. For an example of the levels of UDF abstraction, see Figure 4-5.

Figure 4-5 Levels of UDF Abstraction

3§ Type Tree - UDF3050.MTT I]
& Control
@ Transmission
L—® Partner
@ V3060
—& Element
—& MComposite
—& Record
—&@ SComposite
—& Set
@ #840
@ #5843
L —& Transaction

o s

Again, any category, group, or item may be added by copying from an existing type tree or by
using the new element tool (leaf tool).

A Transaction is the series of elements that compose the UDF, usually in the form of a series
of Recordsand/or Loops, as shown in Figure 4-6 (Recl and Rec2 Groupsin Record Category).
Loops are a series of Records that occur together and are repeated within the scope of the
Transaction. Figure 4-6 illustrates the use of Records and L oops.

Figure 4-6 Record Loops

v I [=1 E
Component Rule

#820Tr_Id01 Record RecordlD Element Control:S = "'01"

#820Tr_L0203 Loops [1:s]

Components may be added to groups by double-clicking the target group and then dragging the
elements to include as components into the desired position on the component list.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

Figure 4-7 is a sample type tree in which the L oops partition groups have been expanded to
reveal the type tree representations of the Loops used in this sample UDF. The Loops that
comprise the #820Travel Transaction may be seen in their type tree representation in
Figure 4-7.

Figure 4-7 Record Loopsin Type Tree

O Type Tree - IPC_UDF.MTT I] |
@ UDF
& Control
& Transmission
@ ¥3040_30560
@ Element
]
—® #820Bnk_L0304
—® #820Ptnr_L0304
L —® #820Tr_LO203
& Record
Transaction
—® #820Bank_V3050
—® #820CBA_V3050
—® #820DTS_V3050
—® #820Partner_VY3050
—® #820Travel _¥3040
—® #824DTS_V3050

Figure 4-8, aLoop Component List, detailsaL oop used in this sample UDF demonstrating the
concept of grouping multiple records and possibly multiple instantiations of records within a
loop. Using Loopsis optional, but Loops may be necessary to prevent long series of repeating
records that appear in certain UDFs.

Figure 4-8 Loop Component List

=] 3
Component Rule
#BEI]TrildIJE Record PRESENTI(S)
#320Tr_Id03 Record [s] RecordlD Element Control:$ ="03"

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 23

MAPPER'’S GUIDE

24

The components of the Records are defined in the UDF logical map specifications and appear
as Elements or Composites of Elements in the type tree. Sometimesiit is necessary to include
morethan one Element in aComposite. The Composite category isexpanded in Figure 4-9, but
the Element category is not, due to the length involved in so doing. Each Element would be
abstracted as an Item whose attributes are defined by the UDF logical map specifications.

Figure 4-9 Composite List Type Tree

3 Type Tree - IPC_UDF MTT =1o] x|
@ UDF
@ Control
@ Delimiter
@ Element
@ Transmission
L—@& Partner
@ V3040_3050
@ Composite
L—® #820DTS_Voucher
L+
@ Loops
& Record
% Transaction

The abstraction, Composite, describes the basic grouping together of a series of related
elements. The use of Compositesis optional, but Composites may be used to denote agroup of
related elements, or of repeating groups of Elements whose existence is associated to other
Elements within the group. In the example UDF, the Composite #820DTS_V oucher, shownin
Figure 4-9, isused to group a series of elementsrelated to each other and the specific Voucher,
which the data describes. Figure 4-10 is the Component List of the #820DTS_V oucher
Composite showing the Elements used to comprise the Composite.

Figure 4-10 Composite Component List

. 1 [=] B
Component Rule

#320DTS_ VYoucherMo Element
#320DTS_VoucherDate Element
#820DTS_VouncherCen Element

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

4.4 Creating Other Type Trees

At times, it is necessary to create type trees that are specific to data structures other than UDF
or X 12 specifications. Other type trees that you may need to create are as follows: the premap
type trees, the input type tree for the x824gen map, the input type tree for the xX997gen map,
and the type trees used to represent the datain an external lookup table. The need for these type
trees depends upon your specific system requirements.

4.4.1 Acknowledgments

When creating x824gen and x997gen maps, you must have type trees that represent the data
provided in the Mercator audit log. Y ou should use an existing audit log type tree and modify
it to fit the specific format of the data contained within the audit log. This audit log datais
generated from the UDF-to-X 12 map for x824gen or the X 12-to-UDF map for x997gen.
Figure 4-11 shows an example audit log.

When creating, changing, and using the type treesfor translation error detection and reporting,
you must have a basic understanding of the layout of the Mercator-generated audit logs. When
referencing the audit log for the purpose of error reporting and translation acknowledgment,
much of the dataincluded in the audit log isirrelevant to the process and may be referred to as
either placeholders or data used for distinguishability purposes.

Figure 4-11 Example Audit Log

=] i [=] X
File Edit View |nset Fomat Help
D2|E| sl sl 2] | 3]
tBEGIN Mercator Commmand Execution Engine for Windows (32 bit) - wersion 1.4.03
13:37:24 April 12, 1599
BEEGIN DATA AUDIT
Lvl Index/Count Jize 3t Namwe (Data)
Auditing input card 1:
o] 1 1 3367 VOO Transaction V3050
o] 3 1 § VOO UDFAddDate Element Control
I 19980702
o] 3 1 & VOO UDFAddTime Element Control
I 01522102
END DATA AUDIT
END AUDIT LOG
Faor Help, press F1 UM %

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 25

MAPPER'’S GUIDE

At thistime, the only data that is pertinent to the error reporting and translation
acknowledgment process is the data contained within the data audit section, delineated by the
BEGIN DATA AUDIT and END DATA AUDIT data markers (Figure 4-11). Because of the
complexity of the type tree needed, you should use a pre-existing audit log type tree and edit
that tree to meet your needs. The typetree displayed in Figure 4-12 shows the basic categories
used, along with a breakdown of al of the data lines (Line category) necessary for containing

the placeholders and data used for distinguishability purposes.

26

Figure 4-12 Audit Type Tree

gT_vpe Tree - AUDITS824 MTT
@ Log
—@ Audit
—@ Element

L@ PreviousMapStatus
—© Field
—&
—®@ BEGIN_DATA_AUDIT
—®@ BEGIN_EXECUTION_LOG
—®@ Commandinfo
—® CommandStart
—@ DataAudit
| ® END_AUDIT LOG
| @ END_DATA_AUDIT
—® END_EXECUTION_LOG
—© ENGINE
—4 FileDesc
—® InputObjectsFound
—© MapStatus
— @ OutputObjectsBuilt
—4 SourceAndDestination
—© TimeDate
—@® TitleBar
— @ WorkfilelD
—& Section
—@ Set
L — & Status

=lax|

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

The Audit Log group is used as the top level of the data abstraction of the Mercator audit log.
Figure 4-13 shows the components of the audit log. The audit log is abstracted as a series of
0-to-many instances of Maplnstance Section.

Figure 4-13 Audit Log Component List

J[=1E3

Component Rule

Maplinstance Section [s]

Figure 4-14 shows the items that compose the M apl nstance Section container. The

M apl nstance Section container is indicative of the representation of the Mercator audit log
layout. As previously mentioned, the majority of the componentslisted in Figure 4-14 are used
to contain information pertinent to the execution of the original UDF-to-X 12 mapping process.

Figure 4-14 Map Instance Component List

=] 3

Component Rule

BeginAudit [0:1) SIZE(S] > 0
First Empty Line [s] SIZE[S] =0
DataAudit [0:1] SIZE[5] > 0
Second Empty Line [0:1] SIZE[S) =0
Execution [0:1] SIZE(S] > 0
Third Empty Line [0:1) SIZE(5] =0
END_AUDIT_LOG Line [0:1) SIZE[5] > 0

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 27

MAPPER'’S GUIDE

Figure 4-15 shows the groups contai ned within the Section category. The important groups are
the Maplnstance container (previously discussed in this section) and the DataAudit container.
In order to view the contents of these or any groupsin Mercator, double-click the group to view,
and the Component lists are displayed.

Figure 4-15 Audit Type Tree Section List

3 Type Tree - AUDIT824 MTT i]
@ Log

—© Audit

—& Field

—@ Line

—@ Section

BeginAudit
DataAudit
Execution

Maplinstance
—
—& Status

Double-clicking the DataAudit Section group displays the component list, as shown in

Figure 4-16. Thislist shows the basic makeup of the Data Audit portion of the Mercator audit

log. Referring to the audit log displayed in Figure 4-11, note that the BEGIN_DATA_AUDIT

Line component of thislist refersto thelinein the audit log that statesBEGIN DATA AUDIT.

The next line of the audit log beginning with “Lvl Index/Count” comprises the TitleBar Line.
The line that follows “Auditing Input Card 1:” is the first element for the Input DataAudit
Status portion of the DataAudit Section. The second element of that group is the Transaction
Set.

Figure 4-16 Data Audit Component List

E I [=1 B
Component Rule
BEGIN_DATA_AUDIT Line
TitleBar LiT'IE B
Input DataAudit Status [s]
Output DataAudit Status (s]
END_DATA_AUDIT Line

28 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

To this point, no major, if any, changes have been necessary to make this audit log type tree
match the requirements that you have for a specific data audit. Figure 4-17 and Figure 4-18
display alist of elementsthat you need to change according to your data auditing requirements.
The type tree shown in Figure 4-17 has the Element group expanded to show the list of
elements that occur within the data audit section, in alphabetical order not order of occurrence.

Figure 4-17 Audit Type Tree Element List

gType Tree - AUDIT824 MTT =10 x|
@ Log

—© Audit

—& Field

—& Line

—& Section

—&@ Set

—© ErrDate
—®& PORef#
—© Testindicator
—© TS#HLines
—& TSCode
—© TSPoslnFile
—@& UDFAddDate
L— @& UDFAddTime
— & ErrorRecord
—& Errors

—@ Junk

—# RecComponent
—& Transaction
— & TSInitRec

L& Status

Each Element is composed of the components displayed in Figure 4-18. Y ou need to change
the component rule for the Occurrence Detail DataAudit Line to reflect the data as it appears

in the audit log.
Figure 4-18 Audit Element Component List
b IS [=] E3
Component Rule
Ocurrence Detail DataAudit Line Object Name Field:5="TSPosInFile Element"

Data Detail DataAudit Line

To reflect the makeup of your audit log Data Audit Section, the Transaction Set components

must be modified. Figure 4-19 shows the sample breakdown of the Transaction Set portion of
thistype tree. In your type tree, you should make changes to assure that you are properly

identifying the Transaction level of the data audit, in this case titled “Partner Transaction”. The
Error component remains for your type tree. This section is actually used to report all of the
errors that occur during the translation process. The Elements following the Error portion

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 29

MAPPER'’S GUIDE

30

contain all of the datathat is passed through the audit log from the original UDF. That datamay
or may not be recorded, asis evident by the (0:1) qudifier at the end of each Element, stating
that there is at most one occurrence, but that the data may not exist. As discussed previously,
these elements are added as you have data recorded in the audit log, and the component rules
for each element are indicative of the dataidentified by each element.

Figure 4-19 Transaction Component List

O] x]
Component Rule
Ocurrence Detail DataAudit Line Object Name Field:5=""Partner Transaction"
TSInitRec
UDFAddDate Element (0:1] Object Name Field:Ocurrence Detail DataAudit Line:5="#0000_UDFAddDate Element Control"
UDFAddTime Element [0:1] Object Name Field:Ocurrence Detail DataAudit Line:5="#0000_UDFAddTime Element Control"
Errors [s)

An Error Detail Linefollowed by alinethat identifiesthe error and any possible erroneous data
represents each error. The components of each Error Set are displayed below. The component
rule for the Error Detail DataAudit Line states that there should be no occurrence of the word
Record in the audit line, because Mercator should always report that an error has occurred
within the Transaction level. The Error Record component states that there may be
zero-to-many errors occurring at the Record level or below. The component rule states that the
Record must appear at the next level for further error mapping to occur. Mercator will report
that there was an error at the Record level before proceeding to report Element-level errors.

Figure 4-20 Error Component List

=10jx]
Component Rule
Error Detail DataAudit Line [s) FIND[""Record™ , Object Name Field:$] =0
ErrorRecord [s] FIND[""Record" , Object Name Field:Error Detail DataAudit Line:$) > 0

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

Asshown in Figure 4-21, each Error Detail DataAudit Line comprises different identification
components. The Level Component is used to determine which level of processing an item

(e.g., transaction, record, element) received, or if an error hasoccurred. Thelevel isdetermined

with respect to the input/output card. The card object is defined as Level 0. The Index

Component is used to record either the index number of the object in a series of objects or a

count of an object that can occur multiple times. The Size Component is used to determine the

size in bytes of the object. The Status Component is used to determine the status of the object’s
data with values (V - Valid, E - Error, W - Warning), and the Code Component is used to record
a two-digit numeric code to further identify the status. The Object Name Component contains
the name of the specific object. This component identifies each data line in the audit log and
can be seen throughout the component rules above listed as Object Name Field.

Figure 4-21 Error Detail Component List

5 - (O] x|
Component Rule

Level Field

Index Field

Object Size Field
Status Field

Code Field

Object Name Field

The Record level error reporting capabilities are broken down into the abstraction of
ErrorRecord Sefrigure 4-22displays a component list of the contents of the Error Record or
Record level error reporting. Again, the data audit line begins with the Error Detail DataAudit
Line, specifying the basic error information. The Error Record may or may not then be
identified in the Record Component or RecComponent. This denotes any errors in the element
or composite level of input/output data. The errors at the element or composite level have a
higher Level number than those in the record, thus providing distinguishability between levels
of error reporting.

Figure 4-22 Error Record Component List

B 8 [=] B3
Component Rule

Error Detail DataAudit Line [FIND["Record", Object Name Field:$] > 0]

RecComponent [s] Level Field:Error Detail DataAudit Line IN $ > Level Field:Error Detail DataAudit Line

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 31

MAPPER'’S GUIDE

Figure 4-23 demonstrates the composition of the RecComponent asit relates to the Composite
level and Element level errors.

Figure 4-23 Audit Type Tree Set List

gType Tree - AUDITE24 MTT
@ Log
—@ Audit
—& Element
—& Field
—@ Line
—& Section
—® Set
Element
ErrorRecord
2
CompositeError
ElementError
Transaction
L —& Status

=10l x|

The components of the CompositeError group are shown in Figure 4-24 to emphasize the
changes necessary for identification of composite and element levels. The Object Name Field
contains the word Composite or the equivalent word used in your fileto identify agrouping of
similar elements. In the case of Element level error reporting, the same line would contain the
word Element or the equivalent word used in your fileto identify your individual items or
elements. Following the component identifying the error level, a data audit line appears
specifying the data that isin error (if available) denoted by the ElementError component.

32

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

Figure 4-24 Composite Error Component List

E I [=] E3

Component Rule
Error Detail DataAudit Line RIGHT[Object Mame Field:5, 9)="Composite"

ElementError

4.4.2 Premap Type Trees

The premap type tree(s) are used in the premap mapping process to break down a series of
incoming transactions contained within one transmission into individual transactions per
transmission. These type trees should be as simple as possible and still be able to adequately
determine the beginning and end of each transaction within the transmission. At timesit is
necessary, depending upon the mapping and data validation requirements, to use a more
detailed type tree. This detailed type tree is particularly necessary for those premap mapping
processes that require padding or labeling of the UDF data.

The premap stage breaks theincoming UDF into individual transaction sets so that they can be

passed into the UDF-to-X 12 map one at atime. Some map families al so require that the premap

format the data. | PC uses the premap to make sure that the transaction sets that depend on each

other are all present. SPS/ITIMP/APADE use the premap to pad records that are variable

length. The premap should do very little, if any, data validation. Because the detailed 824

reports are generated from the UDF-to-X12 map’s audit log, the premap should not fail. The
type tree for the input card of the premap should have just enough information to determine
where each transaction starts and ends.

The premap needs one or two output cards. If the data does not need any additional formatting,
the premap only needs one output card to output the sizes for parsing the original UDF
message. If additional formatting is needed, then the premap must have a second output card
to output the modified data. If two output cards are needed, then the message description needs
too include the premap_udf:yes token. The mapper should create the type trees for the input
card and the modified data card. These type trees may be kept in the same type tree file since
they use similar data elements.

The type tree that outputs the sizes may be reused from any of the other map families because
it is a standard format across the map families. This sizes type tree contains a record for each
transaction. The records are separated by linefeeds. Each record has three fields that are
delimited by commas. The first field is required: It contains the size of the original UDF
transaction. The second field may be used to indicate the type of transaction. This field is blank
if the type of transaction does not affect the translation process. (IPC uses this field but
SPS/ITIMP/APADE and SAACONS do not.) The third field indicates the size of the modified
UDF. This field is blank if the data is not modified.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 33

MAPPER'’S GUIDE

4.4.3 Additiona Input Look-up Table Type Trees

Sometimes it is necessary to create a type tree that represents data contained within external
look-up table files that are used during the mapping process. These type trees should be made
from scratch, and care should be taken to assure that the type trees accurately reflect the data
to be contained within this structure. The type tree should allow comment lines within thefile,
becausethefileis presented to an ECPN administrator for editing through the communications
manager interface, and the rules for data entry should be specified in the top of the file as
comments.

34 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

5.0 Map Construction

5.1 Translating UDF to X12

A logica map document specifies how elements from a UDF are mapped to an X12 and vice
versa. Thisdocument is developed in coordination with the UDF system proponents. For some
systems, this document is part of the UDF specification for that system. For other systems, such
asinthe DTS to DFAS scenario (since they neither receive nor send X12s) it is separately
developed. The following sections detail the construction of a UDF-to-X 12 map.

5.1.1 Map Naming Conventions

The convention for naming mapsin the UDF-to-X12 map isto name all of the maps according

to the X12 type tree. The executable map has a prefix of “E” to indicate that it is the executable
map. The functional maps have a prefix of “f_" to indicate that they are functional maps. The
names of the maps higher in the Navigator map tree view should reflect the X12 enveloping
structure. Appropriate names for the ISA/IEA and GS/GE wrappers are “f_MapIC” and
“f_MapFG". The functional maps for the transaction sets should have the transaction number
in them. For example, the functional map for the 865-transaction set should be “f_865Sets”.
The functional maps for the segments should contain the transaction set number and the
segment initiator. If the transaction uses a segment initiator more than once, the position
number of the segment can be included. The position number can be found in the IC. Some
examples are f_865_PKG and f_865_PWK210. The first example is a functional map for
mapping to the Package segment, and the second example is a functional map for mapping to
the paperwork segment with the position of 210. An “L" in the map name designates a loop.
The 865-transaction set has a POC loop for its detail loop. The functional map name should be
“f_LPOC". All segments in the loop should have the loop name included in their map name.
The POC loop has a CTP segment. The functional map name would be “f 865 LPOC_CTP”.
Any segments that loop within the POC loop would also have another “L" to designate the loop.
The 865 POC has a PID loop in it, the functional map name would be “f_865_ LPOC_LPID".
If the mapper needs to create a functional map to help convert values from the UDF format to
the X12 the functional map name should be descriptive. For example the SPS map family’s
UDF-to-X12 map uses the “f_Declt” and “F_Nmblt” functions to convert numbers that are
being represented as text from the UDF representation to the X12 representation.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 35

MAPPER'’S GUIDE

5.1.2 ISA Segment
The ISA Segment should be filled out as follows:

Table 5-1 |SA Segment

Element Delimiter =SYMBOL(29)

Auth’ninfoQual’r Element ="00"

Auth’ninfo Element = NONE

SecuritylnfoQual'r Element ="“00"

Securitylnfo Element = NONE

Sender InterchangelDQual’r Use ISASNDRQUAL exitproc, e.g.,
Element =LEFT(EXIT(“ISASNDRQUAL",

“NULL","NULL"), 2)

InterchangeSenderID Element Use ISASNDR exitproc, e.g.,
=LEFT(EXIT(“ISASNDR”, “NULL", “NULL"), 15)

Receiver InterchangelDQual'r Use ISARECVQUAL exitproc.

Element

InterchangeRcv'rID Element Use ISARECYV exitproc.
InterchangeDate Element =CURRENTDATE()
InterchangeTime Element =CURRENTTIME()

InterchangeCtriStandardsID Element ="U"
InterchangeCtrlVersion# Element Fill in Control Version Number

InterchangeCtrl# Use ICN exitproc and convert it to a number, e.g.,
=TEXTTONUMBER(TRIMRIGHT(LEFT(EXIT(“I
CN”, “NULL", “NULL"),9)))

Ack’'tRequested Element ="0" (Unless otherwise specified by UDF)
TestIndicator Element =“P” (Unless otherwise specified by UDF)
Composite Delimiter =SYMBOL(31)
Terminator Delimiter =SYMBOL(28)

The values mapped to the InterchangeRcv'rIDQual’r and the InterchangeRcv'rID are
determined by the UDF.

36 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

5.1.3 GS Segment
The GS Segment should be filled out as follows:

Table 5-2 GS Segment

SeglD Element ='GS”

Funct'lIDCd Element Fill in according to IC of transaction set being mapped.
App’nSenderCd Element Value from UDF if present.

App’nRcv’'rCd Element Value from UDF if present.

DateElement =CURRENTDATE()

TimeElement =LEFT(TIMETOTEXT(CURRENTTIME()), 2) +

MID(TIMETOTEXT (CURRENTTIME()), 4,2)
+RIGHT (TIMETOTEXT(CURRENTTIME()),2)

GroupCtrl# Element Use GCN exitproc, e.g.,
=TEXTTONUMBER(TRIMRIGHT(LEFT(EXIT(“G
CN”, “NULL", “NULL"), 9)))

RspAgencyCd Element =X"

VersionReleaselndustrylDCd Fill in Version number.
Element

For more information on how to map the App’nSenderCd and App'nRcv’rCd Elements, refer to
Section 3.4.2.

5.1.4 Audit Settings

The audit log should be as small as possible. Thereis no need to audit on valid segments

because the 824 does not need to refer to segment indexes. The only information needed by the

824 map is any errors that were in the UDF. So the UDF-to-X 12 maps need to report on the
occurrence of any transactions and provide detailed information on errors in any transaction,

and the item datain error. Assuming the UDF is mapping to the X12 3050 standard and that

the UDF type tree follows the conventions laid out in Section 4.3, the audit settings should be

set to audit “ANY Transaction V3050: UDF” with the “Track” set to “occurrence”, the “Detail”

set to “error”, and the “ltem Data” set to “error”. The mapper can set additional audit settings
if the data will be needed in the generation of the 824. Remember that if the incoming UDF has
serious mistakes in it, the audit log might not be able to generate more information other than
“Transaction V3050 UDF” in error.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 37

MAPPER'’S GUIDE

5.2 Translating X12 to UDF

The following sections detail the construction of an X12-to-UDF map.

5.2.1 Map Naming Conventions

In the mapping process, the naming convention for all maps should be determined according

to the destination element. In this case (X12 to UDF), the UDF type tree destination elements

will be used. The executable map should begin with the prefix “E” to indicate that it is an
executable map, while the functional maps should begin with the prefix “f_". The names of the
maps dealing with the enveloping structure of the message should reflect the enveloping
structure used in the UDF.

From a conceptual point of view, a typical transmission is a file composed of one or more
transactions. There may or may not be multiple transaction types for any given UDF. A typical
transaction is composed of one or more records or loops of records, which, in turn, is composed
of one or more elements.

In the case of multiple transaction types being used in a UDF, a functional map may be
necessary to handle the container of the multiple transaction types. For example, if the
transaction types are grouped based upon X12 versions (e.g., V3050, V3070), a functional map
may be required to map each version. The recommended convention for this example would be
something like “f_MapV3070". It would follow that there would be a functional map necessary
for each of the transaction types using a naming convention such as “f_Map810”.

Within each transaction, a functional map would be necessary for each of the records or loops
of records. These maps would adopt the naming described by the destination record or loop,
such as “f_810_R001” or “f_810_L004006", where “R” is used to denote a record and “L" is
used to denote a loop. In this example, “f_810_R001"” would be used to map information to a
001 record, and “f_810_L004006” would be used to map information to a loop containing
records 004 through 006. The transaction type (843 in this case) is also included to track the
transaction in which the loop or record is used.

Within each record, a functional map may be needed to map individual elements or composites
of elements. Again, the naming should reflect the destination element or composite, such as
“f_810_RO001_CPersInfo” or “f_810_R001_MailAddrs”, where “C” is used to denote mapping

to a composite. In this example, “f_810 R001_CPersInfo” would be used to map information
to a composite named Persinfo, and “f_810 R001_ MailAddrs” would be used to map
information to an element named MailAddrs. Note the transaction type (810) and record (001)
are maintained as part of the functional map name for ease of identification.

If, at the element level, further use of functional maps for converting, concatenating,

calculating or other processes of manipulating the data is necessary, the naming convention
should be used to best describe the process. For example, if a function map is needed to append
a value for State to the end of a value for City, a name such as “f_AppendState2City” could be
used.

38 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

5.3 Building the Premap(s)

Anincoming UDF file may require one or two stages of preprocessing prior to passing it onto
the main UDF-to-X 12 map.

5.3.1 The Premapl Stage

The (optional) premapl map should take, asinput, the original UDF file and rearrange the data
within it so that there are single addressee contiguous messages within the output file. Thisis
necessary for message types that use alist of addresslines above asingle body of message text
(e.g., PADDS). The premapl stage duplicates the text body after each address line, so that the
resulting output file can be divided into single addressee messages.

5.3.2 The Premap Stage

The normal premap should take, asinput, the original UDF file or the output from the premapl

stage if it is used. If the “premap_udf=yes” flag is set in the message description file, the
premap is expected to create the following two output files: an index file that details the
message bounding in the input file and UDF output file and the premapped UDF output file. If
the “premap_udf=yes” flag is not set in the message description file, the premap is expected to
create one output file, an index file that details the message bounding in the input file.

5.3.2.1 The Premap Index Output File

The index file is a list of three field records. Each record references a single message
(transaction) in the input UDF file. The first record field is a number which refers to the size of
the single transaction within the input UDF file. The second record field is a string that specifies
the transaction type. (Note that this value is currently useful for IPC UDF-to-X12 mapping
only). The third record field is a number which refers to the size of the single transaction within
the output UDF file. The ECPN translator uses these values to divide the input and output UDFs
into single transaction pieces.

5.3.2.2 The Premap UDF Output File

The UDF output file has all alterations necessary to make it possible to properly analyze the
message in the regular UDF-to-X12 map. Some alterations that have been used include:

« Padding the lines out to a known number of spaces so that optional fields can be defined
as fixed length in the UDF-to-X12 type tree.

« Globally filtering out, or replacing specific byte values as dictated by the message type
rules.

* Placing record initiators on records to make them easily identifiable in the UDF-to-X12
map.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 39

MAPPER'’S GUIDE

6.0 Addressing Procedures

Throughout this section, the Mercator “EXIT” function is referenced. For a complete
discussion of this function, ség@pendix A

Forall X12 messages produced by ECPN, the ISA sender ID qualifier/code (ISA05/06)
corresponds to the ECPN system routing the message:

<ISA05> = LEFT(EXIT("ISASNDRQUAL" ,"NULL" ,"NULL"),2)
<ISA06> = LEFT(EXIT("ISASNDR" ,"NULL" ,"NULL"), 15)

The LEFT function is necessary because of Mercator’s inability to deal with the null
terminators returned in an EXIT function data structure. The last two input arguments are
ignored by the translator in both these cases, but Mercator requires all arguments to have some
value to invoke the call. The string “NULL" has no particular significance, other than for
readability and consistency between map families. The remaining sections only include
ISA07/08 and GS02/03 to avoid redundancy.

6.1 Implicit Addressing

This section pertains to message types in which both sender and receiver ID codes can be found
within the message body and cross-referenced using ECPN’s trading partner database (TPDB),
without referring to a separate table or external information such as a file name. The boldface
type indicates portions of rules that should be entered verbatim, whereas italicized print
indicates general instructions needing some interpretation depending on the specific map
family. Also, map rules given for GS02/03 assume a maximum element length of 15 bytes,
although some older X12 versions specify shorter lengths (e.g., Rev3010 allows only 12 bytes
for each), and the corresponding rules need to be modified in those instances.

6.1.1 UDF-to-X12 Trand ation

The type of the receiver’s ID code given by the UDF needs to be known for a TPDB lookup to
get the values of ISA07/08. If a map family does not exclusively use a given ID type, the ID
code can be distinguished by its characteristics. The qualifier values correspond to those used
in element #66 Identification Code Qualifier, which appears in the N1 segment (among other

40 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

places). To avoid confusion, note that these values are not identical for all qualifier elementsin
the X 12 standard; for example, element #128 Reference Identification Qualifier denotes a
CAGE code using “W7”, instead of the qualifier “33” used for addressing purposes.

Table 6-1 Trading Partner Identifier Types and Properties

Type name Length Properties Qualifier
DUNS 9 Numeric 1
DUNS+4 13 Numeric 9
DODAAC 6 Alphanumeric 10
CAGE 5 1st and 5th Positions Numeric, Middle 3 PositioB8

Alphanumeric Excluding the Letters “I” and “O”

For map families in which incoming UDFs are translated to outgoing X12s, such as SPS and
SAACONS, the interchange receiver values should correspond to the receiver specified in the
UDF. The map rules for ISA07/08 are:

<ISA07> = IF(<UDFrecvID> ="PUBLIC" ,"ZZ" ,
LEFT(EXIT("ISARECVQUAL" , <UDFrecviDqual> , <UDFrecviD>), 2))

<1SA08> = | F(<UDFrecviD> = "PUBLIC" ," PUBLIC" ,
LEFT(EXIT("ISARECV" , <UDFrecviDgual> , <UDFrecviD>) , 15))

where<UDFrecviDqual> is the appropriate qualifier based on the above table. The
conditional statements bypass the TPDB lookups if the message receiver is “PUBLIC".

In contrast, map families which always produce an outgoing UDF (i.e., UDF to X12 to UDF,
or “U2X2U"), including ADS and DIFMS, should have ISA07/08 identical to ISA05/06 since
the system is technically sending the X12 message to itself for retranslation into a UDF:

<ISA07> =LEFT(EXIT("ISASNDRQUAL" ,"NULL" ,"NULL"), 2)
<ISA08> = LEFT(EXIT("ISASNDR" ,"NULL" ,"NULL"), 15)

In both cases, the GS02/03 values should be mapped directly from the UDF without
conversion:

<GS02> = <UDFsndrID>
<GS03> = <UDFrecviD>

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 41

MAPPER'’S GUIDE

6.1.2 X12-to-UDF Trandlation

The sender and receiver in the UDF should be mapped respectively from the GS02 and GS03
of theincoming X 12, without conversion:

<UDFsndrID> = <G02>
<UDFrecvID> = <GS03>

6.1.3 X12 997 Acknowledgment from X12-to-UDF Trandation Audit Log

The audit log for the X12-to-UDF map should be set up to include all sender/receiver
information from the original X12 message, except for U2X2U families which do not require
X12-to-UDF error reporting. Because the 997 acknowledgment is returned to the sender of the
original message, its addressing information can be mapped from the audit log of the original
message in reverse order (excluding |SA05/06 as previously described):

<ISA07> = <ISA05 of incoming X12, from audit log>
<ISA08> = <ISA06 " " ">

and,

<GS02> = <GS03 of incoming X12, from audit log>
<GS03>=<GS02 " " ">

6.1.4 X12 824 Acknowledgment from UDF-to-X 12 Trandation Audit Log

Unlike an incoming X12 which will have its addressing information verified by the system
before tranglation, it cannot be assumed that a UDF will have adequate information to route an
acknowledgment. Therefore, the sender is specified as the ECPN system for the GS02 (in
additionto | SA05/06), and thereceiver (in both GS03 and | SA07/08) is denoted using the name
of the channel from which the original UDF was received. The latter is provided using the
EXIT function INCHANNEL and qualified with “ZZ":

<|ISA07> ="ZZ"
<ISA08> = LEFT(EXIT("INCHANNEL" ,"NULL" ,"NULL"), 15)

and

<G02> =TRIMRIGHT(LEFT(EXIT("ISASNDR" ,"NULL" ,"NULL"),15)))
<G03> =TRIMRIGHT(LEFT(EXIT("INCHANNEL" ,"NULL" ,"NULL"),15)))

42 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

6.2 External Addressing — SAACONS Example

Certain UDFsrequireinformation external to the message content to identify the sender and/or
receiver. For example, a SAACONS message only contains the commercial trading partner’s
ID, identifying the Government site via a three-digit file name extension. A separate table is
cross-referenced to find the site ID (DODAAC in this case) based on the extension. The
implications of using an external look-up approach are outlined in this section, beginning with
some general guidelines:

* Thetype tree representing the lookup table should allow for comments/faulty entries/blank
lines without ignoring valid data or failing translation. One approach is to create a
partitioned “Record” group.

* Whenever referring to table entries in the Mercator LOOKUP function, use the
TRIMLEFT function to remove any leading spaces. (Mercator considers leading spaces in
a left-justified field to be part of the data, which would affect comparisons).

6.2.1 UDF-to-X12 Trandation

A functional map is used to perform the external lookup for GS02, as a workaround to the
limitation that EXIT functions cannot be nested:

=f_LookupDODAAC(RIGHT(LEFT(exit("REMOTEFILENAME" , "NULL", "NULL")
30), 3), SAACONS_DB)

where the right-most 3 bytes of the UDF file name (i.e., the extension) and the entire
SAACONS look-up file are the input arguments. The rule used in the functional map is:

=EITHER(TRIMLEFT(LOOKUP(SiteIDCdElement:.:.SAACONS_DB,
TRIMLEFT(SiteFilenamelDCdElement:.:.SAACONS_DB) =FN_ext_ID)),
TRIMRIGHT(LEFT(exit("FAIL" ,
("UDF Filename Extension Site-ID "™ +
FN_ext_ID + ™" not found in " + GETFILENAME(SAACONS_DB)),

"), 12)))

where SiteIDCdElement and SiteFilenamelDCdElement denote the DODAACs and
corresponding file name extensions in the table, respectively, and FN_ext_ID is the actual
extension. If no match is found (i.e., the LOOKUP evaluates to NONE) the EITHER function
causes the FAIL function to be invoked, which triggers the same error condition resulting from
a TPDB look-up failure. The first argument is an error message displayed to the ECPN
administrator, which includes the unrecognized file name extension and the name of the lookup
table for troubleshooting purposes. The last argument, consisting of 12 blanks, is the value
returned by “FAIL".

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 43

MAPPER'’S GUIDE

6.2.2 X12 824 Acknowledgment from UDF-to-X12 Trandation Audit Log

The 824 acknowledgment would not require any external addressing if it were being sent asan
X12 message, as is the case with the 997 acknowledgment. However, because it will be
translated back into UDF and returned to the original sender, the filename extension from the
original incoming UDF must be preserved. The extension is used instead of the corresponding
DODAAC because an 824 should be generated and returned to the original sender regardless
of whether it can be found in the current look-up table:

="+ RIGHT(LEFT(exit("REMOTEFILENAME" , “NULL", "NULL"), 30), 3) +'T" |

Enclosing thevaluein bracketswill enable the X 12-to-UDF map to distinguish it asafile name
extension rather than aDODAAC, which would normally be expected in GS03.

6.2.3 X12-to-UDF Trandation

To produce the correct file name extension, the function SETSITEID is called to set the value
of the ECPN file name variable “sid”. The corresponding map rule is used where GS03 is
written to Record00:

=IF(LEFT(App'nRcv'rCd Element:GS, 1) ="",

LEFT(exit("SETSITEID" , MID(App'nRcv'rCd Element:GS , 2, 3),
(App'nRcv'rCd Element:GS +" ")), 15),

LEFT(exit("SETSITEID" , EITHER(TRIMLEFT(

LOOKUP(SiteFilenamelDCd Element:..SAACONS_DB,
TRIMLEFT(SiteIDCd Element:.:SAACONS_DB) = GS03)),
SYMBOL(0)),

(GS03 +" ")), 15))

The conditional checks to see whether GS03 is enclosed in brackets, indicating the message is
an 824 acknowledgment, in which case it passes the extension value directly. Otherwise, the
value is assumed to be the DODAAC of the receiving SAACONS site and is cross-referenced
to obtain the correct extension. If the LOOKUP fails, the null character is passed which will
automatically trigger an error condition with an appropriate error message. Because
SETSITEID returns its last input argument, the variable-length GS03 is padded to ensure that
LEFT truncates the null-terminator.

44 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

6.3 Combined Implicit/External Addressing — IPC Example

Although the IPC UDF contains all sender and receiver information within the message body,
thetrading partner (receiver) could beidentified using either a CAGE code or aDSSN. Because
the latter is not included in the TPDB, an external look-up table is required.

6.3.1 UDF-to-X12 Trandation

The addressing for ISA07/08 is basically a two-step process. The receiver’s ID is first assumed
to be a CAGE code, so the map rule for ISAQ7 is:

=IF(PRESENT(LEFT(exit("ISARECVQUAL" , "33",
MID(#820Ptnr_VendorID Element:..UDF,2,5)),15)),
LEFT(exit("ISARECVQUAL" , "33",
MID(#820Ptnr_VendorID Element:..UDF ,2,5)),15),
f VTISAO7(UDF , Vendorinfo))

The conditional verifies a successful TPDB lookup, in which case the returned value is mapped
to ISAQ7. If the lookup fails, the code is assumed to be a DSSN, and the map f_VTISAOQ7 is
called to perform the external lookup:

=EITHER(f_Reset(LOOKUP(ISA07 Element Vendor:.:Vendorinfo,

#820Ptnr_DSSN Element:.;:UDF = DSSN Element Vendor:.:Vendorinfo &

#820Ptnr_VendorID Element:.:UDF = Vendor_ID Element Vendor:.:Vendorinfo)) ,
f Reset("{none}"))

If the LOOKUP successfully matches the ID to a DSSN match in the table, the corresponding
value for ISAQ7 is passed to f_Reset; otherwise, the map is invoked with “{none}" to indicate
a look-up failure. Finally, f_Reset determines whether to reset the error condition triggered by
the original TPDB look-up failure (using RESETERROR) depending on the result of the
external lookup:

=IF(In1 = "{none}", NONE , LEFT(EXIT("RESETERROR", "NULL", In1+" ")
2))

Similar steps are taken to obtain ISA08.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 45

MAPPER'’S GUIDE

7.0 Integration Procedures

Thisappendix describes how to add an externally devel oped map family to the ECPN software.
For each new map family (UDF message type) you create, you may add a package of maps and
supporting filesto an ECPN system that has been previously |oaded with atranslation segment
provided by INRI. This package you add should consist of the following components:

» A set of maps for the UDF message type (describ&kation 3.0 to perform:
— UDF-to-X12 translation
— X12-to-UDF translation
— (optional) UDF-to-X12 premapl to preprocess UDF input
— (optional) UDF-to-X12 premap to preprocess UDF input
— (optional) 824 X12 (UDF-to-X12 acknowledgment) generation
— (optional) 997 X12 (X12-to-UDF acknowledgment) generation

* Any additional look-up tables needed for input to the above UDF-to-X12 translation and
X12-to-UDF translation.

» (optional) Map family help documents, with a main index HTML document referencing
any other provided documents.

* A message description file detailing the names and processing rules for the map family
(described irSection G, and the optional HTML index file for online help.

While it is possible to install a new map family manually, it is best to create a package with an
accompanying installation script to do the installation. This allows the ECPN Administrators
to reinstall the new map family after a new translation segment is loaded and eliminates errors.

The following installation script should be used to install your package. Copy it into a file,
make it executable (e.g., chmod a+x install_maps.sh), add your file names within the quotes of
the variables, place it into a directory with your files, and archive the files into a package (a tape

archive).

#!/ bi n/ sh

This script installs a map family on an ECPN systemthat has
been | oaded with a translation segnent.

1t should reside in the same directory with the map,

message description, docunentation, etc. files that

are getting installed.

PLACE YOUR MAP FAM LY NAME W THI N QUOTES. THI S MUST ALSO BE
THE NAME OF YOUR MESSAGE DESCRI PTI ON FI LE:

e.g.

MAP_FAME" MY_UDF"

46 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

MAP_FAME""

PLACE YOUR MAPS (*.hp files) WTH N QUOTES:
e.g.
MAP_FI LES="x2u. hp u2x. hp 824gen. hp 997gen. hp prenmap. hp"

MAP_FI LES=""

PLACE YOUR LOOKUP TABLES (*.thl files) WTH N QUOTES:
e.g.
LOOKUP_TABLES="accnt 2addr.tbl accnt2nane.tbl"”

LOOKUP_TABLES=""
PLACE YOUR DOC (*.html and *.pdf files) WTH N QUOTES:

e.g.
DOC FI LES="nmy_udf index.htm ny_udf spec. pdf my_udf ref.pdf"

DOC _FI LES=""
#ommmes END USER MOD SECTI ON - ---c-cmomn-
Install Files() {
if ["X$filelist® I'="X"]; then
for f in $filelist
do

if [! -e./$f]; then
echo "$f does not exist in local directory."
echo "Exiting with ERROR. "
exit 1

fi

if [! -d $dest]; then
nkdir -p $dest

fi
echo "copying $f to $dest”
cp ./$f $dest
chown $owner $dest/ $f
chnmod $npde $dest/ $f

done

fi
}

Check for root user to run...
user_name="whoami’
if [x$user_name != "xroot" | ; then
echo "You must be root to run this script."
exit 1

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 47

MAPPER'’S GUIDE

fi

node=664
owner =ecpn: hawk

filelist=$MAP_FAM
dest =/ h/ dat a/ gl obal / EC/ Messages/ MessageDesc

Install Files

filelist=$MAP_FI LES
dest =/ h/ dat a/ gl obal / EC/ Messages/ Maps/ $MAP_FAM

Install Files

filelist=$LOOKUP_TABLES
dest =/ h/ dat a/ gl obal / EC/ Messages/ Maps/ $MAP_FAM

Install Files

filelist=$DOC_FI LES
dest =/ h/data/l ocal / EC/ ht m / MapDocs/ $MAP_FAM

Install Files

Put the map famly nane in TOC file if not already in it:
in_there=‘grep -c ""${ MVAP_FAM $"
/h/data/global/EC/Messages/MessageDesc/TOC’

if ["X$in_there" = "X0"]; then
echo $MAP_FAM >> /h/data/global/EC/Messages/MessageDesc/TOC
fi

Once the package is created, it may be installed on aloaded ECPN system by extracting the
archive and running the install script (asroot). Y ou must stop and restart the ECPN software
before the new map family is available for channel configuration.

48 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

Appendix A EXIT Functions

Mercator provides the ability to temporarily “exit” the map to perform external processing, and
then reenter the map to continue processing. This functionality is invoked using the Mercator
EXIT function when the EXIT function is invoked. The map passes processing back to the
ECPN translator (temporarily), and the ECPN translator processes the request and passes the
results back to the map. This Appendix includes all EXIT functions that are supported in ECPN
Version 2.2. The general usage of an EXIT function is =EXIT(Function_Name, Argl, Arg2).
Mercator requires values for both arguments to invoke the function. Unused arguments are
denoted by the string “NULL".

Note that several exitprocs use a parameter qualifier when accessing the trading partner
database. The list of these values is as follows:

01 or 09 DUNS

33 CAGE

M3 DSSN

10 DODAAC
838FOUND

Indicates whether an 838ading Partner Profile was found in the TPDB for the most recent
843 Response to RFQ received; the match is based on the value of GS02. This is a
SAACONS-specific function.

RETURN VALUE FORMAT: Either “Y” or “N”, depending on whether an 838 was found.
ARGUMENTZ1: “NULL"
ARGUMENT?2: “NULL"

APPENDLOG

This function appends the passed string to the daily (channel-based) translation log. The string
is time and date stamped by the translator. The daily (channel-based) translation logs are used
for map family specific message reporting capabilities, in which the message reporter invokes
a handler to parse these daily logs to create daily, weekly, and/or monthly data reports, as
needed.

RETURN VALUE FORMAT: “NULL"
ARGUMENT1: The string to append to the translation log.
ARGUMENT?2: “NULL"

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 49

MAPPER'’S GUIDE

AUDITLOG

Instructs the trandlator to append the passed string to the audit log at translation completion.
These strings are accumulated during the translation. At the end of tranglation, the audit log is
appended with the following format.

START_ADDL_AUDIT
<stringl>
<string2>

<stringn>
END_ADDL_AUDIT

This functionality is useful in a sequence of trans ations where the audit log will be used in a
subsequent map (e.g., x824gen map).

RETURN VALUE FORMAT: The string passed in ARGUMENTL1.
ARGUMENTZ: The string to append.
ARGUMENT2: “NULL"

FAIL

Forces a message failure condition. The description passed in ARGUMENT1 will be shown in
the error log without modification.

RETURN VALUE FORMAT: Exact duplicate of ARGUMENT?2.
ARGUMENT1: Error description message.
ARGUMENT2: String for function to echo back.

FILETOR

Returns the time of receipt of the received file being translated.
RETURN VALUE FORMAT: YYYYMMDDHHMMSS
ARGUMENT1: “NULL”"

ARGUMENT2: “NULL"

50 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

GCN

Obtains a site-specific unique (sequential) functional group control number.
RETURN VALUE FORMAT: 9 bytes/left-justified/space-padded
ARGUMENTZ2: “NULL”

ARGUMENT2: “NULL”

GETVAR

This function retrieves a string variable’s string value. It can be called by any map in a
translation series to get a variable’s value. For the variable value set functionality, see
SETVAR.

A translation sequence is defined by the series of translations done to create an X12 or UDF
message, and its associated acknowledgments or ancillary parts (e.g., the 838 message that
accompanies an 843 during X12-to-UDF SAACONS translation). For UDF-to-X12

translations, the premap(s) are also part of the sequence. This function can set a variable in one
part of a map and retrieve that value in another part of the same map. Also, this function can
pass values on to the next map in a sequence (e.g., the premap can set a variable, and then the
UDF-to-X12 map can access that value).

RETURN VALUE FORMAT: The variable’s value, or “NULL" if not set.
ARGUMENT1: The variable name.
ARGUMENT2: “NULL"

GSADDR

Performs a TPDB lookup to obtain the functional group ID code of a trading partner, given
some other ID code value and qualifier.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded
ARGUMENTL1: Trading partner ID code qualifier; values = “01”, “09”, “33", “M3", or “10”
ARGUMENT2: Trading partner ID code

ICN

Obtains a site-specific unique (sequential) interchange control number.
RETURN VALUE FORMAT: 9 bytes/left-justified/space-padded
ARGUMENTZ1: “NULL”

ARGUMENT?2: “NULL"

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 51

MAPPER'’S GUIDE

INCHANNEL

Returns the name of the channel on which the message was originally received.
RETURN VALUE FORMAT: 19 byte/left-justified/space-padded
ARGUMENT1: “NULL"

ARGUMENT2: “NULL"

ISARECV

Performs a TPDB lookup to obtain the interchange ID code of a trading partner, given some
other ID code value and qualifier.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded
ARGUMENT1: Trading partner ID code qualifier; values = “01”, “09”, “33”, “M3", or “10”
ARGUMENT2: Trading partner ID code

ISARECVQUAL

Performs a TPDB lookup to obtain the interchange ID code qualifier of a trading partner, given
some other ID code value and qualifier.

RETURN VALUE FORMAT: 2 bytes/left-justified/space-padded
ARGUMENT1: Trading partner ID code qualifier; values = “01”, “09”, “33”, “M3", or “10”
ARGUMENT2: Trading partner ID code

ISASNDR

Returns the ID code of the ECPN system as defined in the System Setup database or the
channel-specific value if present.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded
ARGUMENT1: “NULL"
ARGUMENT2: “NULL"

52 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

ISASNDRQUAL

Returnsthe ID code qualifier of the ECPN system as defined in the System Setup database or
the channel-specific value if present.

RETURN VALUE FORMAT: 2 bytes/| ft-justified/space-padded
ARGUMENT1: “NULL”
ARGUMENT2: “NULL”

LOOKUP FAIL

Forces a message failure condition for a database or table look-up failure.
RETURN VALUE FORMAT: Exact duplicate of ARGUMENT?2.
ARGUMENTL: Error description message.

ARGUMENT2: String for function to echo back.

MSN

Returns the message sequence number (MSN) of the message being translated (outgoing
X12-to-UDF translations only).

RETURN VALUE FORMAT: SNNNNNNNN/YYYYMMDD
where S = the single-character site ID
NNNNNNNN = the numeric (0O padded) sequence
YYYY = the 4-digit year
MM = the (0 padded) month
DD = the (0 padded) day

ARGUMENTZ2: “NULL”

ARGUMENT?2: “NULL"

OUTCHANNEL

Returns the name of the outgoing channel. (X12-to-UDF translation only)
RETURN VALUE FORMAT: 19 byte/left-justified/space-padded
ARGUMENTZ1: “NULL"

ARGUMENT?2: “NULL"

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 53

MAPPER'’S GUIDE

PREVXSTATUS

Returnsthe translation status code of the previoustranslation. Thisfunction isuseful when the
map is in a sequence of transglations (e.g., the 824 Audit Log map after a UDF-to-X12
tranglation).

RETURN VALUE FORMAT: A string representation of:
XLTR_UDF2X12 OK =171
XLTR_UDF2X12 ERR =172
XLTR_LOOKUP_ERR =173
XLTR _X122UDF OK =174
XLTR_X122UDF_ERR =175
XLTR X997 OK =176
XLTR_ X997 ERR =177
XLTR X824 OK =178
XLTR X824 ERR =179
XLTR_PREMAP_OK =180
XLTR_PREMAP_ERR =181
XLTR_OTHER_ERR = 182
XLTR 838 ERR =183
ARGUMENT1: “NULL”"
ARGUMENT2: “NULL"

REMOTEFILENAME

Returns the original name of the file that contained the message being translated. This file name
is the name of the file as it was received on the ECPN system.

RETURN VALUE FORMAT: 30 byte/left-justified/space-padded
ARGUMENT1: “NULL"
ARGUMENT2: “NULL"

54 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

SETSITEID

Sets the value of the <sid> file name variable, which is exclusively used for file name site
identification; currently, only SAACONS uses this function.

RETURN VALUE FORMAT: Exact duplicate of ARGUMENT2.
ARGUMENTZ1: Vaueto assign <sid> file name variable.
ARGUMENT?2: String for function to echo back.

SETVAR

This function sets a string variable’s value. It can be called by any map in a translation series
to set a variable name/value pair, so that later, the variable’s value can be requested during that
same translation sequence. For the variable value request functionality, see GETVAR. A
translation sequence is defined by the series of translations performed to create an X12 or UDF
message, and its associated acknowledgments or ancillary parts (e.g., the 838 message that
accompanies an 843 during X12-to-UDF SAACONS translation).

For UDF-to-X12 translations, the premap(s) are also part of the sequence. This function can be
used to set a variable in one part of a map and to retrieve that value in another part of the same
map. Also, this function can be used to pass values to the next map in a sequence (e.g., the
premap can set a variable, and then the UDF-to-X12 map can access that value, or the
X12-to-UDF map can set a variable, and the X12 997gen map can access that value.)

RETURN VALUE FORMAT: “NULL"
ARGUMENT1: The variable name.
ARGUMENT2: The variable’s value.

SHLIB=<libraryname>

Instructs the translator to load a shared library and to invoke the specified function with the
specified parameters. Note that an HP-UX shared library must be provided with the functions
contained prior to using this EXIT function. The <libraryname> should be replaced with the
actual library to invoke (e.g., mylib.sl).

RETURN VALUE FORMAT: The string value produced by the invoked shared library
function.

ARGUMENTL: The function name within the shared library.
ARGUMENT2: The string to be passed as input to the function.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 55

MAPPER'’S GUIDE

56

TPDBLOOKUP

Performsa TPDB lookup to obtain sometype of ID code of atrading partner, given some other
ID code value and qualifier. If the lookup fails, the translation statusiis set to
LOOKUP_FAILURE. For anon-destructive TPDB look-up, see TPDBLOOKUPNOERR.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded

ARGUMENT1: Qualifiers of given and requested | C code types, comma-separated without
spaces (e.g., “01,33” means you are passing in a DUNS Number and want the CAGE Code);
ValueS = “01”, “09”’ “33”1 HMSH’ Or “10”

ARGUMENT2: Given trading partner ID code.

TPDBLOOKUPNOERR

Performs a TPDB lookup to obtain some type of ID code of a trading partner, given some other
ID code value and qualifier.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded

ARGUMENT1: Qualifiers of given and requested IC code types, comma-separated without
spaces (e.g., “01,33” means you are passing in a DUNS Number and want the CAGE Code);
Values e “01”, “09"’ 1133!!’ “M3H, Or “10”

ARGUMENT2: Given trading partner ID code.

TRANSFAIL

Forces a message failure condition for a translation failure.
RETURN VALUE FORMAT: Exact duplicate of ARGUMENT2.
ARGUMENT1: Error description message.

ARGUMENT2: String for function to echo back.

VAR=<varname>

Used to set a transmit file name variable from the map. The <varname> portion is actually the
variable to set. Example: VAR=SITENAME would set the SITENAME variable for transmit
file name resolution. For a description of transmit file name resolution, sBeftinare User's

Guide for Electronic Commerce Processing Node

RETURN VALUE FORMAT: “NULL"
ARGUMENT1: The value to set in the varname variable.

ARGUMENT2: “NULL"

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

Appendix B Message Description File

The message description file contains fields that are used by the ECPN software to control map
execution and transmit file name resolution. It also contains afull description field that is
displayed to the ECPN administrator during channel configuration.

Each message description field used by the ECPN software and its usage is as follows:

X2Uu_map

The file name (and possible location) of the X12-to-UDF map file to be invoked. (See note
below)

u2x_map

The file name (and possible location) of the UDF-to-X12 map file to be invoked. (See note
below)

x824_map

The file name (and possible location) of the X12 824gen map file to be invoked after the
UDF-to-X12 translation. (See note below)

x997_map

The file name (and possible location) of the X12 997gen map file to be invoked after the
X12-to-UDF translation. (See note below)

premap_udf

A“yes” or “no” value. If set to “yes”, an output UDF file is expected when running premap
(in addition to the index file). The output UDF is used as input to the u2x_map.

premapl

The file name (and possible location) of the premapl map to be invoked prior to the
regular premap. (See note below)

premap

The file name (and possible location) of the premap map to be invoked prior to the
u2x_map. (See note below)

x2u838_map

A SAACONS-specific map to be invoked on the 838 X12 file for transmit along with an
843 message. (See note below)

reject838x824 _map

A SAACONS-specific map to be invoked on the 843 X12 file when the x2u838_map fails,
or there is no associated 838. (See note below)

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 57

MAPPER'’S GUIDE

58

addl_inputs

A comma-separated list of file names (and possible locations) that will be provided to the
u2x_map and the x2u_map during invocation. Each file can have an additional attribute of
“LOCK?” following it. If the lock token is set for a file, then the translator locks this file
before passing it to the map. An input file that will be updated by the map should always
use the lock token to prevent other parallel translation events from accessing or updating
the file while it is unstable. (See note below)

An example addl_inputs line:
addl_inputs: lookupl.tab, lookup2.tab;LOCK, lookup3.tab

The second look-up table is locked by the translator prior to passing to the map. Itis
unlocked after the map completes. This is a cooperative lock, where the file is only
protected from multiple access if all accessors use the lock token. So if an input file is to
be used by more than one map family, then each map family that accesses this file should
use the lock token for that file.

addl_outputs

A comma-separated list of file names (and possible locations) that will be provided to the
u2x_map and the x2u_map during invocation. It is only useful during X12-to-UDF
translation, where each additional output will be sent to the same destination as the regular
(generated) UDF. (See note below)

split_route

This field has the following possible values: “ISA”, “GS”, or “ST". It defines the outgoing
(X12-to-UDF) translation granularity. This granularity defines the amount of the message
that gets passed to the X12-to-UDF maps for a single translation. Through the channel
configuration, the ECPN administrator can refine the granularity to a lower level (where
ISA is the highest, and ST is the lowest). But the ECPN administrator cannot raise the
granularity above the value that is set in this field. Note that since the default value for a
UDF message type is “GS”, if the field is not present in the message description file, the
X12-to-UDF map will receive a single GS (and possibly multiple STs within it) per
invocation.

docs

This is an html file that serves as the table of contents page in a web browser when the user
chooses to view the UDF and X12 specifications for this system.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

e variables

This is a semicolon separated list of variable names that is presented to the ECPN
administrator for transmit file name building. The format of each element is a readable
string, followed by a curly-brace-enclosed variable name. The X12-to-UDF map is
expected to set the value of each of these variables during translation by using the
VAR=<var name> exitproc.

NOTE: Map, additional input, and additional output file names and locations can be
specified by using a full path and name or a name only. Alternatively, any or all of the
path and/or name can be specified using variables that are evaluated at execution time.
These are not the same variables as those specified in the “variables” message
description, above. These variables, and their expansion rules are as follows:

“O%datafiles” — Expands to the value of the environment variable:
VIDS_DATAFILES or to /h/data/global/EC if VIDS_DATAFILES is not set.

“%channel” — Expands to the value of the channel name. For instance, during
X12-to-UDF translation for the SAACONS FTP1 channel, if the SAACONS
message description has the value cross_ref_%channel.tab: in the addl_inputs list,
then the file /h/data/global/EC/Messages/Maps/SAACONS/cross_ref FTP1.tab is
passed to the X12-to-UDF map at invocation.

“%map_fam” — Expands to the value of the message type.

After path/name expansion, if there is no leading slash ('/’), then the file is assumed to
be in the $VIDS_DATAFILES/Messages/Maps/<map family name> directory. For the
SAACONS map family, on a production or test platform, this would be
/h/data/global/EC/Messages/Maps/SAACONS

The following is an example message description file:

I
/1 Aline starting with "//" is treated as a comment |i ne.
premap: saaconspremap. hp
pr emap_udf: yes
X2u_map: saaconsx2u. hp
u2x_map: saaconsu2x. hp
x824_map: saaconsx824. hp
x997_map: saaconsx997. hp
x2u838_map: saaconsx838. hp
rej ect 838x824_nmap: saaconsr ej ect 838x824. hp
addl _i nput s: saacnsdb. t bl , saunctonv. t bl
docs: saaconsdocs. ht i
variables: Site | D {saacons-sid}; Transacti on Type {saacons-ttype}
short desc: SAACONS
ful | desc:
NAME
SAACONS - Standard Army Autonated Contracting System

MESSAGE TRANSLATI ON
SAACONS nessage translation supports outbound (UDF->X12)

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 59

MAPPER'’S GUIDE

824, 836, 840, 850, and 860 transactions and i nbound
(X12->UDF) 824 and 843 transactions. Translation is based on
the 3010 Rework | nplementati on Convention and the
correspondi ng SAACONS UDF.

For each 843 (Response to Request for Quotation) received,

the X12 838 (Trading Partner Profile) of the bidding vendor is
retrieved fromthe Tradi ng Partner Database, translated to SAACONS UDF,
and transmitted to the SAACONS site along with the 843. If the 838 is
m ssing or invalid, ECPN produces an X12 824 failure acknow edgnent
detailing the problemand returns the 824 to the vendor, w thout
transmtting the 843 to the SAACONS site. ECPN copies the addressing
and other information for the 824 failure acknow edgnent fromthe 843.

TRANSACTI ON TYPES

Transacti on Types UDF- >X12 X12- >UDF
824 Application Advice X X

836 Contract Award X

838 Tradi ng Partner Profile X*

840 Request for Quotation X

843 Response to Request for Quotation X

850 Purchase Order X

860 Purchase Order Change X

* Used only for internal processing of 843 bids. An 838 cannot be
transmtted directly froma vendor to a SAACONS site.

ACKNOWLEDGVENT MESSAGES

For each UDF->X12 nessage translation, an 824 acknow edgnent is
produced indicating the success of the translation and the |ocation
and type of any errors. The 824 is automatically returned to the
sender of the UDF nessage, and the addressing fields reflect the
ECPN system as the sender and the SAACONS channel nane as the
receiver.

For each X12->UDF nessage translation, a 997 acknow edgment is
produced indicating the success of the translation and the |ocation
and type of any errors. The 997 is automatically returned to the
sender of the X12 nessage, and the addressing fields are copied
fromthe original X12 nessage, except for the |SA05/06 fields, which
are taken fromthe System Setup Dat abase.

CHANNEL SETUP

60

FI LE NAME VARI ABLES

Qutgoing file names for SAACONS channel s should be entered as foll ows:
{saacons-ttype}{yr}{jul}{cccc}.{saacons-sid}

where {yr}, {jul}, and {cccc} are standard ECPN file name vari abl es
that will produce the current 2-digit year, julian date, and value of a
4-digit counter that is increnented i ndependently for each channel.
The t wo SAACONS- specific file nane vari abl es are expl ai ned bel ow.

{saacons-ttype}
This variable identifies the transaction type contained within
the file with a 1-letter identifier ("b" for 843s, "v" for 838s,

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

or "f" for 824s). Place this variable at the beginning of the
file name.

{saacons- si d}

This variable specifies the 3-digit file nane suffix used to
identify the SAACONS site. This suffix is assigned during the
X12->UDF transl ation process. Place this variable at the end
of the file namne.

OTHER REQUI RED SETTI NGS
In the GENERAL tab of the edit channel w ndow, set the channel to
connect every 10 minutes (or nore frequently) between 00: 00 and 24: 00
every day.

In the FTP TRANSFER tab of the edit channel w ndow, select MJLTIPLE
as the file TRANSFER MODE.

In the ADM N tab of the edit channel w ndow, you should enabl e
all 997/ 824 acknow edgnments and send them on the incom ng channel,
unl ess the SAACONS site specifies otherw se.

ROUTI NG
To set up routing froma SAACONS site to trading partners, use the
FI LE/ VAN NAME PATTERN as the routing criteria. To set up routing
fromtrading partners to a SAACONS site, use the | SA/GS TO (GS03)
as the routing criteria.

ADDRESSI NG
UDF- >X12 ADDRESSI NG
| SAO5/ 06 - | NTERCHANGE SENDER | D QUALI FI ER/ | D CODE
The ECPN System Interchange ID Qualifier/Code values specified in the
System Setup Dat abase are inserted into | SAO5/06. These val ues are
overridden for an X12 channel if |SA05/06 values are specified in the
CONVERSI ON tab of the edit channel w ndow.

| SAO7/ 08 - | NTERCHANGE RECEI VER | D QUALI FI ER/ | D CODE

If the TPID field in Record 01 of the UDF nessage contains either
"PUBLI C' or "DAPS," that value is directly inserted into | SAO8 and
"ZZ" is inserted into | SAO7. Otherwise, the value in the TPIDfield in
Record 01 is assuned to be the vendor CACE Code and is cross-

ref erenced agai nst the Tradi ng Partner Database to obtain that vendor’s
preferred Interchange I D Qualifier/Code values for insertion into

| SAO7/08. Any of these values is overridden for an X12 channel if

| SA0O7/ 08 val ues are specified in the CONVERSI ON tab of the edit channel
wi ndow.

| SA13 - | NTERCHANGE CONTROL NUMBER (| CN)

The ECPN System | nterchange Control Nunber, which is incremented for
each out going X12 interchange and bound by maxi num and m ni mum

al | owabl e values set in the System Setup Database, is inserted into
| SA13.

GS02 - FUNCTI ONAL GROUP SENDER

The 3-digit site ID file nane extension is cross-referenced agai nst
the table file saacnsdb.tbl to obtain the DODAAN of the sendi ng SAACONS
site, which is inserted into GSO2.

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 61

MAPPER'’S GUIDE

GS03 - FUNCTI ONAL GROUP RECEI VER

If the TPID field in Record 01 of the UDF nmessage contains either
"PUBLIC' or "DAPS," that value is directly inserted into GS03.

Q herwise, the value in the TPID field in Record O1 is assunmed to
be the vendor CAGE Code and is cross-referenced agai nst the Trading
Part ner Database to obtain that vendor’s preferred Functional G oup
I D Code for insertion into GSO3.

GS06 - FUNCTI ONAL GROUP CONTROL NUMBER (GCN)

The ECPN System Group Control Nunber, which is increnented for each
out goi ng X12 functional group and bound by nmaxi mum and m ni num

al | onabl e val ues set in the System Setup Database, is inserted into
GS06.

X12- >UDF ADDRESSI| NG
The | ook-up tabl e saacnsdb.tbl is queried for the site ID file nane
extension corresponding to the receiving SAACONS site, using the DODAAN
given in elenment GSO03 (Functional G oup Receiver). This 3-digit site
IDis assigned to the variable {saacons-sid}, which should be |ocated
at the end of the outgoing file nane of each SAACONS channel .

The vendor’s CAGE Code is located within the body of the X12 nmessage
(within an N1 loop) and is directly inserted into the TPID field in
Record 01. If no CAGE Code is found, ECPN attenpts to find either a
DUNS Number or DODAAC and query the Trading Partner Database to obtain
t he CAGE Code.

LOOK- UP TABLES
saacnsdb. t bl
FORMAT
Comment lines begin with the character #.

Each line in the | ook-up table contains a single entry, including the
site IDfile name extension (3 characters) and the DODAAN (2-12
characters) for a given SAACONS site, delimted by a comma. Any lines
that do not match this format are ignored during | ook up.

No spaces are necessary; any spaces preceding or follow ng either the
file name extensi ons or DODAAN codes are disregarded.

USAGE

During UDF->X12 translation, the file nane extension of the

UDF file sent fromthe SAACONS site is |looked up in this table to
obtain the correspondi ng DoD Activity Address Nunber (DODAAN) for
that site, which is inserted in el enent GS02 of the mapped X12
nessage.

During X12->UDF transl ation, the value of GSO3 in the X12 nessage
sent froma vendor to a SAACONS site (assumed to be the DODAAN of
the receiving SAACONS site) is looked up in the table to

obtain the corresponding file name extension for the

resulting UDF file.

In either case, an unsuccessful ook up (non-match) results in a
translation failure.

62 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

sau

MAPPER’S GUIDE

nmconv. t bl
FORVAT
Comment |lines begin with the character #.

Each line in the | ook-up table contains a single entry, including the
UDF Code Value (2 characters), the X12 Code Value (2 characters), and
the description (1-n characters), delinmted by a comma. Any lines
that do not match this format are ignored during | ook up.

No spaces are necessary; any spaces preceding or follow ng any of the
code val ues or descriptions are disregarded.

USAGE

During translation (either direction), each occurrence of the Unit
or Basis for Measurenent Code is mapped using this table to convert
between the ANSI X12 standard set of values and the set of code

val ues used by the SAACONS sites. If a match is not found in this

table, then the received value is mapped directly.

CAUTI ON: The maps nust be nodified to recognize any Unit of
Measur enent Codes which are added to this table; otherw se, those

values will be considered invalid during translation.
REFERENCES

Type |1C specification I C version # UDF specification UDFdat e

824 3010Rewor k_X12DODI C_ 003010R824_1 saacons_udf_824. pdf 11/25/96
824. pdf

836 3010Rewor k_X12DODI C_ 003010R836_1 saacons_udf_836. pdf 11/25/96
836. pdf

838 3070Rewor k_X12Fedl C_ 003070F838_0 838saacons_udf . pdf 08/11/98
838. pdf

840 3010Rewor k_X12DODI C_ 003010R840_1 saacons_udf_840. pdf 11/25/96
840. pdf

843 3010Rewor k_X12DODI C_ 003010R843_1 saacons_udf_843. pdf 10/21/96
843. pdf

850 3010Rewor k_X12DODI C_ 003010R850_1 saacons_udf_850. pdf 10/25/96
850. pdf

860 3010Rewor k_X12DODI C_ 003010R860_1 saacons_udf_860. pdf 01/27/97
860. pdf

997 3010Rewor k_X12DODI C_ 003010R997_0 (N A) (N A)
997. pdf

MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999 63

MAPPER'’S GUIDE

Appendix C TESTAPI Map Family

The Mercator EXIT functions, as defined in Appendix A, can help you understand the map to
translator API. To assist with this, the TESTAPI map family is provided. This map family can
be used, asatranglation type, so an ECPN system can be configured to receive aUDF message
onaTESTAPI type channel or to send an X12 message to a TESTAPI type channel. Although
the message being received or transmitted is the primary input to each of the TESTAPI maps,
the additional input and additional output files provide the real value as follows:

* The additional input file, exitproc.tbl, contains records, each of which include the name of
the EXIT function to invoke and the two parameters to pass to the EXIT function. The
initial version of this file contains most of the EXIT functions and the associated
parameters. In addition, through the edit channel window/edit look-up tables function,
more functions (as defined Appendix A can be added and different parameter pairs can
be used to further exercise each EXIT function (e.g., both success and failure conditions).

* The additional output file, results.tbl, will be generated for each translation and will
include each record line from the additional input file with the results (as passed back to
the map) appended.

The following test datafiles are provided in the /h/data/global/EC/Messages/Maps/TESTAPI
directory:

+ sample.x12 — data used for an X12-to-UDF message translation (map supports V4010
-824, 836, 840, 843, 850, 855, 860, 865).

» sample.udf — data used for a UDF-to-X12 message translation.
» tpdb_filler — data used for creating the trading partner database to perform lookups.

» exitproc.tbl — data used for an X12-to-UDF or UDF-to-X12 message translation and
contains a list of all EXIT functions to be invoked, along with the parameters to pass to
each.

Format and usage of exitproc.tbl:

Each line has three fields that are delimited by semicolons. The first field is required and
contains the name of the exitproc (in uppercase). The second and third fields are used as
arguments to the specified exitproc. If these arguments are not given, by default, these fields
will be set to “NULL". No spaces are necessary; any spaces preceding or following any of the
field values will be disregarded. Any line not matching this format will cause the map to fail.

64 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAY 1999

MAPPER’S GUIDE

On asystem loaded with ECPN (at least) version 2.2 and ECPN Translation segment (at | east)
Version 1.1, thefollowing configuration is required. For detailed instructions for each of these
steps, see the Software User’'s Guide for Electronic Commerce Processing:Node

« Configure the system setup database as described$ottveare User’'s Guide for
Electronic Commerce Processing Node

¢ Create an FTP channel to pull in the CCR data. The node type MUST be CCR, which is an
option you must chose at channel creation time. Make the “pull from path” point to a
directory you create, and the file name pattern should be “tpdb_filler”.

* Copy the /n/data/global/EC/Messages/Maps/TESTAPI/tpdb_filler file to your created
“pull from” directory.

e Turn on your CCR channel. This will pull and remove the “tpdb_filler” file (the remove
operation is the reason you did not “pull” it directly from the original location). The
messages within the file will be parsed, and the trading partner database (TPDB) will be
populated. This will take a few minutes. You may view the TPDB from the databases menu
option. Select Refresh (CTRL-R), to watch it be populated. When it stops populating, the
processing is complete.

« Create an X12 channel to pull in an X12 message. The node type should be anything except
CCR, and the protocol should be FTP. The “pull from path” should be a temporary
directory you create, and the file name pattern should be “sample.x12”. Turn off the “check
reply route” option. The “push to path and name” is required, but can be anything (e.g.
“ftmp/{ccc}”).

« Copy the /h/data/global/EC/Messages/Maps/TESTAPI/sample.x12 to your temporary
directory.

» Create a TESTAPI type UDF channel to pull the sample UDF file in, and to send the
sample X12 message out (after X12-to-UDF translation). The “pull from path” should be
a temporary directory you create, and the file name pattern should be “sample.udf’. The
“push to path and name” should be to the same temporary directory, with the name portion
(after the last slash character): “/tmp/my_dir/out_udf.{ccc}".

* Copy the /h/data/global/EC/Messages/Maps/TESTAPI/sample.udf file to this temporary
directory.

» Add a route using the route database window so that all messages received on the X12
channel will be routed to the TESTAPI UDF channel.

You are now ready to begin the test:

e Turn on the TESTAPI UDF channel to pull in the sample.udf file. This will invoke the
incoming translator, and all the EXIT functions listed in the exitproc.tbl file. Copy the
/h/data/global/EC/Messages/Maps/TESTAPI/results.tbl file to a safe location for analysis.
(The next translation will overwrite it).

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 65

MAPPER'’S GUIDE

* Turn on the X12 channel to pull in the sample.x12 file. The router will route it to the
TESTAPI UDF channel. This will invoke the outcoming translator, and all the EXIT
functions listed in the exitproc.tbl file. Copy the
/h/data/global/EC/Messages/Maps/TESTAPI/results.tbl file to a safe location for analysis.
(The next translation will overwrite it).

Repeat the test runs as many times as you wish by editing the exitproc.tbl input datafile to
produce different results.

66 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

MAPPER’S GUIDE

Appendix D Notes

The following acronyms and abbreviations appear in this document:
ADS: Automated Disbursing System

AlS: Automated Information System

ANSI: American National Standards Institute

APADE: Automated Procurement and Accounting Data Entry
API: Application Programming I nterface

CAGE: Commercia and Government Entity Code

CCR: Central Contractor Registry

DAPS: Defense Automated Printing System

DIFM S: Defense Industrial Financial Management System
DI SA: Defense Information Systems Agency

DODAAC: Department of Defense Activity Address Code
DODAAN: Department of Defense Activity Address Number
DSSN: Disbursing Station Sequence Number

DTS: Defense Travel System

DUNS: Data Universal Numbering System

EC: Electronic Commerce

ECPN: Electronic Commerce Processing Node

EDI: Electronic Data Interchange

FTP: File Transport Protocol

GCN: Group Control Number

GUI: Graphical User Interface

GW: Gateway

HTML: Hypertext Markup Language

ICN: Interchange Control Number

INRI: Inter-National Research Institute

IPC: Integrated Paying and Collecting

MAPPER’S GUIDE FOR ECPN VERSION 2.2 » MAY 1999 67

MAPPER'’S GUIDE

ITIMP: Integrated Technica Item Management and Procurement
M SN: Message Sequence Number

PADDS: Procurement Automated Data and Document System
RFQ: Request for Quotation

SAACONS: Standard Army Accounting and Contracting System
SABRS: Standard Accounting, Budgeting, and Reporting System
SPS: Standard Procurement System

TPDB: Trading Partner Database

UDF: User-Defined File

VAN: Value Added Network

68 MAPPER’S GUIDE FOR ECPN VERSION 2.2 « MAaY 1999

ECPN
Document Comment Form

We would like to know your comments and suggestions regarding this document. With your help, we will be able to make
improvements to this and other ECPN documents in the future.

Please rate each of the following items by circling a response:

POOR FAIR GOOD é;/gg\[() EXCELLENT
1) Helpfulness 1 2 3 4 5
2) Accuracy 1 2 3 4 5
3) Readability 1 2 3 4 5
4) Organization 1 2 3 4 5
5) Easy to Understand 1 2 3 4 5
Please check your response to each of the following items:
6) Doesthe document contain enough figures/illustrations? __Yes ___No
7) Isthelevel of detail adequate? ____Yes ____No
8) Doesthe document meet your needs as a reference guide? ___Yes ____No

Please respond to each of the following questions:

9) What is missing from this document?

10) What do you like about this document?

11) What do you dislike about this document?

Please enter any additional comments or suggestions in the space below.

Date:
Name:
Position/Title:
Address:
City/State:

Thisform isready to be mailed to the address printed on the reverse. Just fold and seal thisform with tape or staples, affix a stamp,
and mail it. Or, if you prefer, place this form in an envel ope and address the envelope for mailing.

FOLD

Place
Stamp
Here

Documentation Manager
Inter-National Research Institute, Inc.
12350 Jefferson Avenue, Suite 400
Newport News, VA 23602

FOLD

	1.0 Document Overview
	2.0 Referenced Documents
	3.0 Translation Overview
	Figure�3�1 Message Exchange
	3.1 Transaction Types
	Table�3�1 Transaction Sets�

	3.2 Maps
	Table�3�2 Translation Map Default Directories�

	3.3 ECPN Translation Programs
	3.4 UDF-to-X12 Translation Basics
	3.4.1 X12 Envelope Information
	Table�3�3 X12 Envelope Information (Continued)

	3.4.2 Envelope Value Generation
	3.4.2.1 Values from Message Content
	3.4.2.2 Values from Databases that Support Translation
	3.4.2.3 Values from Look-up Tables

	3.5 X12-to-UDF Translation Basics
	3.6 Processing Flow
	3.6.1 UDF to X12
	3.6.2 X12 to UDF

	3.7 Admin Message Processing
	3.8 Translation Toolbox

	4.0 Type Tree Construction
	4.1 Document Overview
	4.1.1 ANSI ASC X12 Document
	4.1.2 Implementation Conventions (IC)
	4.1.3 Part 10
	4.1.4 UDF Specifications

	4.2 Creating X12 Type Trees
	Figure�4�1 Delete Subtypes Dialog Box
	Figure�4�2 Merge Type Dialog Box

	4.3 Creating UDF Type Trees
	Figure�4�3 UDF Enveloping Scheme Type Tree Window
	Figure�4�4 Copy Type Tree Dialog Box
	Figure�4�5 Levels of UDF Abstraction
	Figure�4�6 Record Loops
	Figure�4�7 Record Loops in Type Tree
	Figure�4�8 Loop Component List
	Figure�4�9 Composite List Type Tree
	Figure�4�10 Composite Component List

	4.4 Creating Other Type Trees
	4.4.1 Acknowledgments
	Figure�4�11 Example Audit Log
	Figure�4�12 Audit Type Tree
	Figure�4�13 Audit Log Component List
	Figure�4�14 Map Instance Component List
	Figure�4�15 Audit Type Tree Section List
	Figure�4�16 Data Audit Component List
	Figure�4�17 Audit Type Tree Element List
	Figure�4�18 Audit Element Component List
	Figure�4�19 Transaction Component List
	Figure�4�20 Error Component List
	Figure�4�21 Error Detail Component List
	Figure�4�22 Error Record Component List
	Figure�4�23 Audit Type Tree Set List
	Figure�4�24 Composite Error Component List

	4.4.2 Premap Type Trees
	4.4.3 Additional Input Look-up Table Type Trees

	5.0 Map Construction
	5.1 Translating UDF to X12
	5.1.1 Map Naming Conventions
	5.1.2 ISA Segment
	Table�5�1 ISA Segment

	5.1.3 GS Segment
	Table�5�2 GS Segment

	5.1.4 Audit Settings

	5.2 Translating X12 to UDF
	5.2.1 Map Naming Conventions

	5.3 Building the Premap(s)
	5.3.1 The Premap1 Stage
	5.3.2 The Premap Stage
	5.3.2.1 The Premap Index Output File
	5.3.2.2 The Premap UDF Output File

	6.0 Addressing Procedures
	6.1 Implicit Addressing
	6.1.1 UDF-to-X12 Translation
	Table�6�1 Trading Partner Identifier Types and Properties�

	6.1.2 X12-to-UDF Translation
	6.1.3 X12 997 Acknowledgment from X12-to-UDF Translation Audit Log
	6.1.4 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log

	6.2 External Addressing – SAACONS Example
	6.2.1 UDF-to-X12 Translation
	6.2.2 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log
	6.2.3 X12-to-UDF Translation

	6.3 Combined Implicit/External Addressing – IPC Example
	6.3.1 UDF-to-X12 Translation

	7.0 Integration Procedures
	Appendix A EXIT Functions
	Appendix B Message Description File
	Appendix C TESTAPI Map Family
	Appendix D Notes

